Курс лекций Рекомендовано редакционно-издательским советом Орелгту в качестве учебного пособия Орел 2005

Вид материалаКурс лекций

Содержание


Тема 6. Дедуктивные умозаключения 6.1 Умозаключение как форма мышления
6.2 Общая характеристика дедуктивных умозаключений
6.3 Прямые умозаключения логики высказываний
Прямыми называются умозаключения, в которых заключение выводится из некоторого множества суждений. Непрямыми
В)» и «Человек болен (В
Подобный материал:
1   ...   19   20   21   22   23   24   25   26   ...   47

Тема 6. Дедуктивные умозаключения




6.1 Умозаключение как форма мышления



Еще более сложной формой мышления, чем суждение, является умозаключение. Чтобы уяснить происхождение и сущность умозаключения, необходимо сопоставить два рода знаний, которыми мы располагаем и пользуемся в процессе своей жизнедеятельности, - непосредственное и опосредованное.

Непосредственные знания – это те, которые получены нами с помощью органов чувств: зрения, слуха, обоняния и т.д. Таковы, например, знания, выраженные суждениями типа: «Дерево зеленое», «Снег белый», «Птица поет», «Сосновый лес пахнет смолой». Они составляют значительную часть наших знаний и служат их базой.

Однако далеко не обо всем на свете мы можем судить непосредственно. Например, никто никогда не наблюдал, что в районе Москвы некогда бушевало море. А знание об этом есть. Оно получено из других знаний. В Подмосковье обнаружены большие залежи белого камня, из которого и строилась белокаменная Москва. Он образовался из скелетов бесчисленных мелких морских организмов, которые могли накапливаться лишь на дне моря. Так был сделан вывод о том, что примерно 250 - 300 миллионов лет назад Русскую равнину, на которой расположена и Московская область, заливало море. Подобные знания, которые получены не прямо, непосредственно, а опосредованно, путем выведения из других знаний, называются опосредованными (или выводными). Логической формой их приобретения и служит умозаключение. Таким образом, умозаключение – это форма мышления, посредством которой из известного знания выводится новое знание.

6.2 Общая характеристика дедуктивных умозаключений



Дедукцию (в переводе с лат. deductio – выведение) часто характеризуют как умозаключение от общего к частному. Эта не вполне верная характеристика дедуктивных умозаключений связана с их противопоставлением индуктивным умозаключениям. Более верно следующее определение:

дедуктивные умозаключения – это такие умозаключения, которые при условии истинности посылок должны гарантировать истинность заключения.

Посылки – это те суждения, из которых выводится последнее суждение, называемое заключением; заключение – это суждение, которое выводится из предыдущих суждений (посылок).

Истинность заключения при истинности посылок в дедуктивных умозаключениях обусловливается тем, что в этих умозаключениях между посылками и заключением существует отношение логического следования.

В силу того, что в дедуктивных умозаключениях заключение логически следует из посылок, они представляют собой самый надёжный способ доказательства. Однако надёжность дедуктивных умозаключений существует в ущерб их информативности, то есть они не дают новой информации о мире. В заключениях этих умозаключений содержится та же самая информация, что и в посылках, и нет никакой новой информации. Поэтому выводы данного типа достоверны: если истинна информация в посылках, то истинна и та её часть, которая содержится (выводится) в заключении. Действительно, рассмотрим такие дедуктивные умозаключения, как простой категорический силлогизм:

Все люди смертны.

Ты – человек.

Следовательно, ты смертен.

или условно-категорическое умозаключение:

Если на улице дождь, то на улице лужи.

На улице дождь.

Следовательно, на улице лужи.

Ни в одном, ни в другом умозаключении суждения, являющиеся заключениями дедукции (расположены под чертой), не представляют интереса с точки зрения получения новой информации.

Тем не менее дедукция даёт новое знание, но в том смысле, что она изменяет познавательный статус суждений, их место в системе наших знаний о мире, то есть, обосновывая мнения, догадки, доказывая гипотезы, предположения и т.п., превращает их в теоремы, законы, убеждения и т.п.


6.3 Прямые умозаключения логики высказываний



Умозаключения логики высказываний основаны на структуре сложных суждений (на смысле логических связок, объединяющих простые суждения в сложные) и не учитывают внутреннюю структуру простых суждений, входящих в посылки.

Умозаключения логики высказываний бывают прямые и непрямые. Прямыми называются умозаключения, в которых заключение выводится из некоторого множества суждений. Непрямыми являются умозаключения, которые получаются путём преобразования других умозаключений.


Виды простых2 форм прямых умозаключений логики суждений:

1. Условно-категорические – это умозаключения, в которых одна посылка – условное суждение, а вторая посылка и заключение – суждения категорические. Условно-категорические умозаключения бывают двух разновидностей:

а) утверждающий модус:

А®В, А

В


б) отрицающий модус:

А®В, ùВ


ùА

(В схемах умозаключений над чертой записываются посылки, под чертой – заключение, черта означает «следовательно»; А и В – простые суждения).

Пример 1. Если человек простужен (А), то он болен (В).

Человек простужен (А).

Он болен (В).

Пример 2. Если человек простужен (А), то он болен (В).

Человек не болен (В).

Он не простужен (А).

Сходные схемы


АВ, В

А

и

АВ, А

В

не являются правильными.

Пример 3. Из посылок «Если человек простужен (А), то он болен ( В)» и «Человек болен (В)» вовсе не обязательно следует «Он простужен (А)». «Человек болен» может означать, что у него сломана нога, поднялось давление и т. п. И только с определенной долей вероятности может оказаться, что он болен, потому что простужен. Аналогично вероятным получится заключение и для отрицающего модуса.

2. Разделительно-категорические – это умозаключения, в которых одна посылка – разделительное суждение, а другая посылка и заключение – суждения категорические. Разделительно-категорические умозаключения также бывают двух разновидностей:

а) утверждающе-отрицающая схема:

б) отрицающе-утверждающая схема:

АÚВ, В


ùА

АÚВ, А

ùВ

АÚ (Ú) В, ùА

В

АÚ (Ú) В, ùВ

А