П падение тела
Вид материала | Документы |
- Тема «кинематика материальной точки», 29.33kb.
- Урок изучения новых знаний в 9-м классе по теме: "Свободное падение тел", 145.66kb.
- Программа вступительных испытаний по физике механика, 48.4kb.
- Тема: строение тела животных, 47.92kb.
- Конспект урока физики в 7 классе Тема : Вес тела, 40.5kb.
- Тема. Малые тела Солнечной системы, 383.39kb.
- Книга о душе, 521.77kb.
- Владимир Данченко принципиальные вопросы общей теории чакр и тантрическая концепция, 1664.57kb.
- Беседа – лекция. Прием наркотика – всегда полет, но в конце – всегда падение, 76.9kb.
- Беседа – лекция. Прием наркотика – всегда полет, но в конце – всегда падение, 83.01kb.
ПРОЧНОСТИ ПРЕДЕЛ, напряжения или деформации, соответствующие максимальному (до разрушения образца) значению нагрузки. При растяжении цилиндрич. образца из металла разрушению (разрыву) обычно предшествует образование шейки, т. е. местное уменьшение поперечных размеров образца, при этом необходимая для деформации растягивающая сила уменьшается. Отношение наибольшего значения растягивающей силы к площади поперечного сечения образца до нагружения наз. у с л о в н ы м П. п. или в р е м е н н ы м с о п р о т и в л е н и е м. И с т и н н ы м П. п. наз. отношение значения растягивающей силы непосредственно перед разрывом к наименьшей площади поперечного сечения образца в шейке. При одноосном растяжении условный П. п. меньше истинного. В хрупких материалах местное уменьшение поперечных размеров перед разрывом незначительно, а потому величины условного П. п. и истинного П. п. различаются мало. При продольном сжатии цилиндрич. образца разрушению не предшествует уменьшение сжимающей силы. Условный и истинный П. п. при этом вычисляются как отношения значения сжимающей силы непосредственно перед разрушением к нач. (до сжатия) площади поперечного сечения и к площади сечения при разрушении соответственно. При кручении тонкостенного трубчатого образца определяется П. п. при сдвиге как наибольшее касательное напряжение, предшествующее разрушению образца.
В сложном напряжённом состоянии П. п. определяется как значение некрой комбинации компонентов тензора напряжений или тензора деформации
593
перед разрушением. При этом, вообще говоря, значение П. п. зависит от процесса деформации, т. е. от порядка приложения нагрузок. В нек-рых материалах разрушение наступает, когда наибольшее растягивающее напряжение достигает предельного значения; в других — когда предельного значения достигает наибольшее касательное напряжение; в третьих — когда предельного значения достигает интенсивность напряжений, и т. п. Выбор П. п. зависит как от св-в материала, так и от требований, предъявляемых к конструкции. Напр., в ряде случаев в конструкции недопустимо возникновение пластич. деформаций. При этом для определения П. п. используются условия пластичности.
Значение П. п. зависит от внешних условий, напр. от темп-ры, гидростатич. давления, наличия химически агрессивной среды.
См. также Прочность длительная.
В. С. Ленский.
ПРОЧНОСТЬ твёрдых тел, в широком смысле — свойство тв. тел сопротивляться разрушению (разделению на части), а также необратимому изменению формы (пластич. деформации) под действием внеш. нагрузок. В узком смысле — сопротивление разрушению.
В зависимости от материала, вида напряжённого состояния (растяжение, сжатие, изгиб и др.) и условий эксплуатации (темп-ра, время действия нагрузки и др.) в технике приняты разл. меры П. (предел текучести, временное сопротивление, предел усталости и др.). Разрушение тв. тела — сложный процесс, зависящий от мн. факторов, поэтому величины, определяющие П., явл. условными.
Физическая природа
прочности. П. тв. тел обусловлена в конечном счёте силами вз-ствия между атомами или ионами, составляющими тело. Напр., сила вз-ствия двух соседних атомов (если пренебречь влиянием окружающих атомов) зависит лишь от расстояния
Рис. 1. Зависимость силы взаимодействия двух атомов от расстояния между ними.
между ними (рис. 1). При равновесном расстоянии r0~0,1 нм (1 Å) эта сила равна нулю. При меньших расстояниях сила положительна и атомы отталкиваются, при больших — притягиваются. На критич. расстоянии rк сила притяжения по абс. величине максимальна и равна Fт. Напр., если при растяжении цилиндрич. стержня с поперечным сечением S0 действующая сила Р, направленная вдоль его оси, такова, что приходящаяся на данную пару атомов внеш. сила превосходит макс. силу притяжения Fт, то атомы беспрепятственно удаляются друг от друга. Однако, чтобы тело разрушилось вдоль нек-рой поверхности, необходимо, чтобы все пары атомов, расположенные по обе стороны от рассматриваемой поверхности, испытывали силу, превосходящую Fт. Напряжение, отвечающее силе Fт, наз. теор. прочностью на разрыв т (т0,1 Е, где Е — модуль Юнга). Но на опыте наблюдается разрушение при нагрузке Р*, к-рой соответствует напряжение =P*/S, в 100—1000 раз меньше т. Расхождение теор. П. с действительной объясняется неоднородностями структуры тела (границы зёрен в поликрист. материале, посторонние включения и др.), из-за к-рых нагрузка Р распределяется неравномерно по сечению тела.
Механизм разрушения. Если на участке поверхности S малых размеров (но значительно превышающем сечение одного атома) локальное напряжение окажется больше т, вдоль этой площадки произойдёт разрыв. Края разрыва разойдутся на расстояние, большее rк, на к-ром межатомные силы уже малы, и образуется трещина (рис. 2). Зарождению микротрещин при напряжении ниже т способствуют термич. флуктуации. Локальные напряжения особенно велики у края образовавшейся трещины, где происходит концентрация напряжений, причём они тем больше, чем больше её размер. Если этот размер больше нек-рого критич. rс, на атомы у края трещины действует напряжение, превосходящее т, и трещина растёт дальше по всему сечению тела с большой скоростью — наступает разрушение. rс определяется из условия, что освободившаяся при росте трещины упругая энергия материала покрывает затраты энергии на образование новой поверхности трещины: rсЕ/2 (где — энергия единицы поверхности материала).
Рис. 2. Трещина Гриффита. Стрелки указывают направление растяжения, заштрихована область, в к-рой сняты напряжения.
Прежде чем возрастающее внеш. усилие достигнет необходимой для разрушения величины, отдельные группы атомов, особенно входящие в состав дефектов в кристаллах, обычно испытывают перестройки, при к-рых локальные напряжения уменьшаются («релаксируют»). В результате происходит необратимое изменение
формы тела — пластич. деформация; ей также способствуют термич. флуктуации. Разрушению всегда предшествует большая или меньшая пластич. деформация. Поэтому при оценке rс в энергию должна быть включена работа пластич. деформации p, к-рая обычно на неск. порядков больше истинной поверхностной энергии . Если пластич. деформация велика не только вблизи поверхности разрушения, но и в объёме тела, то разрушение в я з к о е. Разрушение без заметных следов пластич. деформации наз. х р у п к и м. Характер разрушения проявляется в структуре поверхности излома. В крист. телах хрупкому разрушению отвечает скол по кристаллографич. плоскостям спайности, вязкому — слияние микропустот и скольжение. При низкой темп-ре разрушение преим. хрупкое, при высокой — вязкое. Темп-ра перехода от вязкого к хрупкому разрушению наз. критич. темп-рой хладноломкости.
Поскольку разрушение есть процесс зарождения и роста трещин и пор, оно характеризуется скоростью или временем т от момента приложения нагрузки до момента разрыва, т. е. долговечностью материала. Исследования многих крист. и аморфных тел показали, что в широком интервале темп-р Т (по абс. шкале) и напряжений , приложенных к образцу, долговечность при растяжении определяется соотношением:
где 0— прибл. равно периоду тепловых колебаний атомов в тв. теле (10-12с), энергия U0 близка к энергии сублимации материала, активац. объём V составляет обычно неск. тысяч ат. объёмов и зависит от структуры материала, сформировавшейся в процессе предварительной термич. и механич. обработки и во время нагружения, k=l,38•10-16 эрг/град — постоянная Больцмана. При низких темп-рах долговечность очень резко падает с ростом напряжения, так что при любых важных для практики значениях т существует почти постоянное предельное значение напряжения 0, выше к-рого образец разрушается практически мгновенно, а ниже — живёт неограниченно долго. Это значение 0 можно считать п р е д е л о м п р о ч н о с т и (см. табл.).
Время т затрачивается на ожидание термофлуктуац. зарождения микротрещин и на их рост до критич. размера rс. Когда к образцу прикладывают напряжение о, он деформируется сначала упруго, затем пластически, причём около структурных неоднородностей, имевшихся в исходном состоянии или возникших при пластич. деформации, возникают большие локальные напряжения (напр., в кристаллах — в результате скопления дислокаций). В этих местах зарождаются микро-
594
НЕКОТОРЫЕ ЗНАЧЕНИЯ ПРОЧНОСТИ НА РАСТЯЖЕНИЕ, 0 в кгс/мм2 (1 кгс/мм2=10 МН/м2)
трещины. Их концентрация может быть очень большой (напр., в нек-рых ориентированных полимерах до 1015 трещин в 1 см3). Однако их размеры, определяемые масштабом структурных неоднородностей, значительно меньше rс. Под постоянным напряжением размеры и концентрация трещин растут медленно и тело не разрушается, пока случайно, напр. благодаря последовательному слиянию близко расположенных соседних трещин, одна из них не дорастёт до критич. размера. Поэтому при создании прочных материалов следует заботиться не столько о том, чтобы трещины не зарождались, сколько о том, чтобы они не росли. Случайное распределение структурных неоднородностей по объёму образца, по размерам и по степени прочности и случайный характер термич. флуктуации приводят к разбросу значений долговечности (а также предела П. 0) при испытаниях одинаковых образцов при заданных значениях а я Т. Вероятность встретить в образце «слабое» место тем больше, чем больше его объём. Поэтому П. (разрушающее напряжение) малых образцов (напр., тонких нитей) выше, чем больших из того же материала (т. н. масштабный эффект). Участки с повышенным напряжением, где легче зарождаются микротрещины, встречаются чаще у поверхности (выступы, царапины). Поэтому полировка поверхности и защитные покрытия повышают П. Напротив, в агрессивных средах П. понижена.
• Разрушение, пер. с англ., т. 1, М., 1973; Гуль В. Е., Структура и прочность полимеров, 3 изд., М., 1978; Инденбом В. Л., О р л о в А. Н., Проблема разрушения в физике прочности, «ПП», 1970, № 12, с. 3; Р е г е л ь В. Р., С л у ц к е р А. И., Томашевский Э. Е., Кинетическая природа прочности твердых тел, М., 1974.
А. Н. Орлов,
ПРОЧНОСТЬ ДЛИТЕЛЬНАЯ, разрушение материала не тотчас после приложения нагрузки, а по истечении нек-рого времени. При этом разрушению предшествует б. или м. заметная деформация ползучести материалов. Явление П. д. позволяет использовать конструкцию в течение ограниченного (может быть, очень короткого, но достаточного для выполнения заданной функции) времени при больших нагрузках, существенно превышающих нагрузки, допустимые при длительной эксплуатации.
П. д. характеризуется временем до разрушения при фиксированном напряжённом состоянии и при заданной темп-ре. Напр., в опытах с растяжением цилиндрич. образца строят кривые П. д., по к-рым определяется время до разрушения при заданном норм. напряжении в поперечном сечении для разных значений темп-ры испытаний (рис.). Чем больше напряжение , тем меньше времени проходит до разрушения. Для конструирования часто важно знать деформацию в момент, непосредственно предшествующий разрушению. Обычно чем больше время до разрушения, тем меньше накопленная деформация ползучести.
В сложном напряжённом состоянии кривую П. д. можно строить, напр., как зависимость времени до разрушения от интенсивности напряжений. Для определения хар-к П. д. при изменяющихся во времени нагрузках пользуются теорией, основанной на понятии накопления в материале микроскопич. повреждений.
Исследование П. д. важно для определения времени безопасного функционирования (ресурса) конструкции и решения проблемы наименьшего веса конструкции. См. также Запаздывание текучести.
В. С. Ленский.
ПРЫЖКОВАЯ ПРОВОДИМОСТЬ, механизм электропроводности тв. тел, связанный с «перескоками» эл-нов, локализованных в пр-ве, из одного состояния в другое. П. п. наблюдается в неупорядоченных системах, у к-рых электронные состояния, локализованные в разных местах, имеют разную энергию. При прыжке эл-на из одного состояния в другое дефицит энергии покрывается за счёт энергии тепловых колебаний атомов. С этим связана характерная температурная зависимость электрич. сопротивления . При умеренно низких темп-рах, когда доминируют «прыжки» между соседними состояниями, ln~T-1. С понижением темп-ры длина прыжка возрастает, а дефицит энергии уменьшается. Это приводит к зависимости ln~Tn, где n<1.
• Шкловский Б. И., Эфрос А. Л., Электронные свойства легированных полупроводников, М., 1979.
А. Л. Эфрос.
ПРЯМЫЕ ЯДЕРНЫЕ РЕАКЦИИ, процессы, в к-рых вносимая в ядро энергия передаётся преим. одному или небольшой группе нуклонов. П. я. р. вызываются всевозможными
налетающими ч-цами — от -квантов до многозарядных ионов, во всём доступном диапазоне энергий (до неск. ГэВ и более). Для П. я. р. характерны сильная угловая анизотропия вылета ч-ц и сравнительно слабая зависимость сечения а от энергии налетающих ч-ц S. Ядро, образующееся в результате П. я. р., находится, как правило, либо в слабо возбуждённом, либо в осн. состояниях.
П. я. р. были открыты в начале 50-х гг. Первыми были обнаружены реакции дейтронного срыва (d, р) и подхвата (р, d) на лёгких ядрах. Образующиеся в этих реакциях протоны и дейтроны вылетают в осн. вперёд (в направлении пучка налетающих ч-ц). Известны П. я. р., в к-рых нуклон или группа нуклонов переходит от одного из сталкивающихся ядер к другому (реакции передачи), реакции квазиупругого рассеяния (р, 2р), процессы с выбиванием из ядра дейтронов, т. е. реакции (р, pd) и т. д.
Особенности П. я. р. могут быть объяснены, если допустить, что вылетевшие из ядра ч-цы получили энергию и импульс в процессе непосредственного вз-ствия с налетающей ч-цей. Предполагается, что П. я. р. происходят на периферии ядра, где плотность нуклонов мала, вследствие чего ч-ца, получившая достаточную энергию от внеш. агента, имеет значит. вероятность покинуть ядро. Т. к. протяжённость периферийного слоя порядка 1 ф, а радиус ядра тяжёлых ядер составляет 10 ф (см. Ядро атомное), то относит. вероятность П. я. р. должна быть ~10% (у лёгких ядер несколько больше), что согласуется с экспериментом.
Количеств. теория П. я. р. была предложена С. Т. Батлером в 50-х гг. (США), впервые применительно к реакциям срыва. Она основывалась на представлении о потенциальном вз-ствии налетающей ч-цы с нуклонами ядра. В 60-х гг. была сформулирована дисперс. теория, основанная на использовании методов квант. теории поля (фейнмановской диаграммной техники). Она даёт возможность выразить вероятность П. я. р. через константы, характеризующие ядро (напр., эфф. число ч-ц данного сорта на периферии ядра), и амплитуды вероятности элем. акта вз-ствия налетающей и внутриядерной ч-ц.
П. я. р. используются для изучения спектра яд. уровней, структуры периферии ядра (в частности, периферийных коррелированных групп нуклонов — «кластеров») и получения данных о вз-ствии нестабильных элем. ч-ц с нуклонами.
• Б а т л е р С., Ядерные реакции срыва, пер. с англ., М., 1960; Шапиро И. С., Теория прямых ядерных реакций, .М., 1963; его же, Некоторые вопросы теории ядерных реакций при высоких энергиях, «УФН»,
595
1967, т. 92, в. 4, с. 549; Колыбасов В. М.,Лексин Г. А., Шапиро И. С., Механизм прямых реакций при высоких энергиях, «УФН», 1974, т. 113, в. 2.
И. С. Шапиро.
ПСИ-ЧАСТИЦЫ, см. Мезоны со скрытым «очарованием».
ПУАЗ (П, Р), единица динамич. вязкости в СГС системе единиц, названа в честь франц. учёного Ж. Л. М. Пуазёйля (J. L. M. Poiseuille). 1 П=0,1 Па•с.
ПУАЗЁЙЛЯ ЗАКОН, закон течения жидкости в тонкой цилиндрич. трубке: объём Q жидкости, протекшей за секунду через поперечное сечение трубки, прямо пропорц. разности давлений p и p0 у входа в трубку и на выходе из неё, четвёртой степени диаметра d трубки и обратно пропорц. длине l трубки и коэфф. вязкости жидкости:
Ф-ла получена в 1840—41 франц. учёным Ж. Л. М. Пуазёйлем, а связь коэфф. k с коэфф. вязкости установлена позднее англ. учёным Дж. Стоксом: k=/(128).
П. з. применим только при ламинарном течении жидкости (практически для очень тонких трубок) и при условии, что длина трубки значительно превышает т. н. длину начального участка, на к-ром происходит развитие ламинарного течения в трубке. П. з. применяется для определения коэфф. вязкости жидкостей при различных темп-рах с помощью капиллярных вискозиметров.
ПУАССОНА КОЭФФИЦИЕНТ, см. Модули упругости.
ПУАССОНА УРАВНЕНИЕ, дифференциальное уравнение
д2u/дx2+д2u/дy2+д2u/дz2=-4(x, y, z)
одно из осн. ур-ний теории потенциала. Так, П. у. определяет потенциал и в точке с координатами х, у, z в электростатич. поле, создаваемом электрич. зарядами с объёмной плотностью (x, у, z). Если u — потенциал поля тяготения, то (х, у, z) — плотность распределения масс. Если (х, y, z)=0, то П. у. превращается в Лапласа уравнение. Решение П. у. может быть записано в виде
где интеграл взят по всему объёму, в к-ром (, , 0. Названо по имени франц. учёного С. Д. Пуассона (S. D. Poisson).
ПУЗЫРЬКОВАЯ КАМЕРА, прибор для регистрации следов (треков) заряж. ч-ц высоких энергий, действие к-рого основано на вскипании перегретой жидкости вблизи траектории ч-цы. Изобретена Д. Глейзером (США) в 1952 (Нобелевская премия, 1954). Жидкость можно нагреть выше точки кипения, но такая перегретая жид-
кость нестабильна и через нек-рое время т вскипает.
Прохождение заряженной частицы через перегретую жидкость (T>Tк
Рис. Вз-ствие К--мезона в жидководородной пузырьковой камере с протонами, в результате к-рого рождаются ч-цы +, К+, +,-, К0, распадающиеся на +- и --мезоны.
П. к. обычно используются для регистрации актов вз-ствия ч-ц высоких энергий с ядрами жидкости или актов распада ч-ц (рис.). В первом случае рабочая жидкость исполняет роль мишени и регистрирующей среды. Наиболее часто рабочей жидкостью служат жидкий водород, дейтерий, смеси Ne с водородом (к р и о г е н н ы е к а м е р ы), а также пропан (C3H8), фреон и Хе обычно в смеси с пропаном (т я ж е л о ж и д к о с т н ы е к а м е р ы).
Перегрев жидкости осуществляется быстрым понижением давления от нач. значения рн>р0 до значения р<р0 (p0—равновесное давление при темп-ре Т). Понижение давления достигается либо перемещением поршня в жидко-водородных камерах, либо сбросом давления из объёма, ограниченного гибкой мембраной (в пропановых и фреоновых камерах). В момент времени t0 (pн>p0) давление в камере сбрасывается за 5—15 мс и жидкость оказывается перегретой, т. е. чувствительной к излучению. Ч-цы впускаются в П. к. в момент макс. чувствительности. Через нек-рое время после достижения пузырьками достаточных размеров производится фотографирование (стереофотосъёмка с помощью неск. объективов).
Для измерения импульсов заряж. ч-ц П. к. помещают в сильное магн. поле. Импульс р ч-цы определяется по радиусу кривизны траектории в магн. поле