Данько Софья Владимировна введение целью данного курса является получение студентами знаний об основных закон

Вид материалаЗакон
Подобный материал:
1   2   3   4   5   6   7   8   9   10   ...   13
повторение в определяющей части самого определяемого понятия, но, быть может, в несколько ином выражении, напр.: «Фильтрование - процесс разделения с помощью фильтра».

ЛЕММА - в математике вспомогательное предложение, употребляемое при доказательстве одной или нескольких теорем. В логике — условно-разделительное, или лемматическое, умозаключение.

ЛОГИКА, или: Формальная логика, — наука о законах и операциях правильного мышления. Согласно основному принципу Л., правильность рассуждения (вывода) определяется только его логической формой, или структурой, и не зависит от конкретного содержания входящих в него утверждений. Различие между формой и содержанием может быть сделано явным с помощью особого языка, или символики, оно относительно и зависит от выбора языка.

ЛОГИКА ВЫСКАЗЫВАНИЙ, или: Пропозициональная логика, — раздел логики, формализующий употребление логических связок «и», «или», «не», «если, то» и т. п., служащих для образования сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется сложным. В Л. в. простые высказывания рассматриваются в отвлечении от их внутренней (субъектно-предикатной) структуры. Та или иная истинностная оценка высказывания именуется его истинностным значением.

ЛОГИКА КЛАССИЧЕСКАЯ - раздел современной (математической, символической) логики, включающий классическую логику высказываний и классическую логику предикатов. Л.к. опирается на принцип двузначности, в соответствии с которым всякое высказывание является или истинным, или ложным.

ЛОГИКА НЕКЛАССИЧЕСКАЯ - совокупность логических теорий, возникших в известной оппозиции к логике классической и являющихся во многом не только критикой последней и попыткой ее усовершенствования, но также ее дополнением и дальнейшим развитием идей, лежащих в основе современной логики.

Начавшаяся в конце XIX — начале XX в., критика классической логики привела к возникновению целого ряда новых, неклассических разделов математической (символической) логики.

Л. Брауэр (1881—1961) подверг сомнению неограниченную применимость в математических рассуждениях классических законов исключенного третьего, (снятия) двойного отрицания, косвенного доказательства. Одним из результатов анализа таких рассуждений явилось возникновение интуиционистской логики, сформулированной в 1930 г. А. Гейтингом и не содержащей указанных законов.

К. И. Льюис (1883—1964) разработал первую неклассическую теорию логического следования, в основе которой лежало понятие строгой импликации. К настоящему времени предложен целый ряд теорий, претендующих на более адекватное, чем даваемое классической логикой, описание логического следования и условной связи. Наибольшую известность из них получила релевантная логика.

Классическая логика исходит из предположения, что всякое высказывание является или истинным, или ложным. В 20-е годы XX в. Я. Лукасевичем (1878-1956) и Э. Постом (1897—1954) были построены многозначные логики, допускающие более двух истинностных значений.

На рубеже 20-х годов К. И. Льюисом и Я. Лукасевичем были построены первые модальные логики, рассматривающие понятия необходимости, возможности, случайности и т. п.

В середине 20-х годов появилась первая работа Э. Малли по деонтической логике, исследующей логические связи нормативных высказываний.

Особенно интенсивно Л. н. продолжала расширяться после второй мировой войны.

В настоящее время Л. н. является наиболее интенсивно развивающейся частью логики, нашедшей важные приложения в философии, математике, кибернетике, физике, языкознании и т. д.

ЛОГИКА ПРЕДИКАТОВ, или: Функциональная логика, теория квантификации, кванторная логика, - основной раздел современной (математической, символической) логики, в котором описываются выводы, учитывающие внутреннюю (субъектно-предикатную) структуру высказываний. Л. п. является расширенным вариантом логики высказываний.

ЛОГИЧЕСКАЯ ФОРМА — способ связи содержательных частей рассуждения (доказательства, вывода и т. п.). В соответствии с основным принципом логики, правильность рассуждения зависит только от его формы и не зависит от его конкретного содержания. Само название «формальная логика» подчеркивает, что эта логика интересуется только формой рассуждения. Л. ф. представляется посредством логических констант и переменных. Логические константы, подобные «и», «или», «если, то» и т. д., не имеют самостоятельного содержания, но с их помощью из одних содержательных выражений могут быть получены новые содержательные выражения. Переменные, входящие в Л. ф., представляют выражения, обладающие самостоятельным содержанием: высказывания, имена.

МОДУС - философский термин, обозначающий свойство предмета, присущее ему только в некоторых состояниях и зависящее от окружения предмета и тех связей, в которых он находится.

В логике М. - разновидность некоторой общей схемы рассуждения. Чаще всего говорят о М., или формах, силлогизма (правильных и неправильных). К М., скажем, гипотетического силлогизма относятся М. поненс и М. толленс, к М. дизъюнктивного силлогизма —М. толлендо поненс и М. понендо толленс

МОДУС ПОНЕНДО ТОЛЛЕНС - термин средневековой логики, обозначающий следующие схемы рассуждения:

Либо A, либо B. A. Следовательно, не-B.

Либо A, либо B. B. Следовательно, не-A.

Здесь A и B - некоторые высказывания; «либо A, либо B» и «A» — посылки; «неверно, что B» («не-B») — заключение:

МОДУС ПОНЕНС — термин средневековой логики, обозначающий правило вывода и соответствующий ему логический закон.

Правило вывода М. п., обычно называемое правилом отделения (иногда гипотетическим силлогизмом), позволяет от утверждения условного высказывания и утверждения его основания (антецедента) перейти к утверждению следствия (консеквента) этого высказывания: Если A, то B. A. Следовательно, B.

Здесь A и B -