Анализ комплексов лактоферрина молока человека

Дипломная работа - Химия

Другие дипломы по предмету Химия

гими каталитическими активностями. При хроматографии ЛФ на Blue Sepharose достигнуто разделение белка на несколько отдельных субфракций с разным сродством к сорбенту, в результате которого происходит отделение от основного пика белка нескольких дополнительных пиков ЛФ. Все пики белка были исследованы в реакции расщепления ряда различных субстратов и показано, что кроме гидролиза РНК различные изоформы ЛФ активны а гидролизе ДНК (ДНКазаная), АТР (АТРазная), олиго- и полисахаридов (амилолитическая), а также отщеплении 5 - концевого фосфотной группы олигонуклеотидов (5 - фосфатазная активность). Положение пиков различных активностей на профиле хроматографии в основном не совпадало, но некоторые пики ЛФ обладали несколькими ферментативными активностями. Субстратная специфичность ЛФ в гидролизе ДНК отличается от таковой для известных ДНКаз человека [28]. В отличие от основной фракции ЛФ с самым высоким сродством к Blue Sepharose, все субфракции ЛФ с ДНКазной активностью оказались цитотоксичными и подавляли рост клеток раковых линий мышей и человека.

Возможные причины различия свойств этих изоформ пока не установлены. Авторы работ [27-29] предположили, что наличие изоформ может быть обусловлено различной степенью гликозилирования белка и / или его фосфорилирования. Тем не менее, эта гипотеза пока не проверена экспериментально.

Как следует из рассмотренных выше данных, в организме человека могут присутствовать изобелковые формы ЛФ [25-29]. Принимая во внимание эти данные, а также возможность существования ЛФ в как минимум четырех различных олигомерных состояниях (мономер - тетрамер) очевидно, что образование различных олигомерных форм белка, состоящих из субъединиц, соответствующих различным избелковым формам, является одним их потенциальных путей модификации свойств лактоферрина.

Дополнительным путем регуляции-изменения биологических свойств ЛФ может быть его взаимодействие с большим числом биологически активных молекул: РНК, ДНК, АТР, белками или лигандами полисахаридной природы.

Молекула ЛФ обладает исключительной конформационной лабильностью и может существовать в самых разных конформационных состояних. Это связано с тем, что в молекуле белка два домена соединены с помощью достаточно гибкого аминокислотного фрагмента. Это создает дополнительные возможности различного рода изменений конформации белка в отсутствии и в присутствии природных лигандов и, как следствие, самым разным изменениям его биологических свойств. Таким образом, следует полагать, что в регуляции свойств ЛФ человека может быть задействовано несколько совершенно различных механизмов, которые включают: а) аллостерическое изменение конформации белка под действием ионов железа и других металлов, а также нуклеиновых кислот, белков, нуклеотидов или полисахаридов, б) изменение олигомерного состояния белка под действием указанных природных лигандов, в) существование мономеров белка в виде большого числа различных изобелковых форм, а также образования олигомерных форм белка, состоящих из различных субъединиц, соответствующих этим формам.

Таким образом, очевидно, что несмотря на более, чем 50-летнюю историю исследования механизмов функционирования ЛФ, изучение этого белка представляется исключительно актуальным и в настоящее время. Современные достижения в области развития новых физико-химических методов исследования белков представляются исключительно перспективными для анализа закономерностей возможности олигомеризации ЛФ под действием различных лигандов.

 

 

2.Экспериментальная часть

 

2.1Теоретические основы использованных методов и аппаратурное обеспечение

 

Методы рентгеновской и оптической дифракции.

Рассеяние плоской волны веществом.

Пусть плоская монохроматическая волна A0exp(ik0r) падает на рассеивающий центр О, который под действием излучения становится источником сферической волны. Тогда в точке наблюдения L, результирующая волна имеет вид.

 

(2.1)

 

Здесь k0 и k - волновые векторы падающей и рассеянной волн, |k0| = |k|= 2?/?, ? - длина волны, А0 и А0b/|r| - амплитуды этих волн, r - вектор, соединяющий точку L с рассеивающим центром в точке О. Амплитуда рассеянной сферической волны равна произведению амплитуды падающей волны и коэффициента b/|r|, где значение b определяется видом падающего излучения и природой рассеивающего центра, находящегося в точке О. Чем сильнее взаимодействие падающей волны с центром О, тем больше коэффициент b. Он имеет размерность длины и носит название длины рассеяния, или амплитуды рассеяния точечного центра. Рассеяние плоской монохроматической волны на реальных объектах, состоящих из совокупности ядер и электронов, можно рассматривать как точечные рассеивающие центры.

Рассеивающую способность произвольного скопления ядер, электронов при облучении их рентгеновскими лучами или светом можно характеризовать рассеивающей плотностью ?(r) - скалярным полем, заданным в ограниченной области пространства. Для рентгеновского рассеяния ?(r) - плотность распределения заряда, в случае света - это оптическая плотность вещества, зависящая от показателя преломления. Взаимодействие волны (рентгеновского излучения или света) с веществом можно представить себе таким образом, что волна электромагнитного излучения взаимодействует со всеми ядрами, электронами и валентными оболочками, которые становятся источниками сферических волн.

 

Рис. 2. Рассеяние плоской волны т?/p>