Обработка и фильтрация данных дистанционного зондирования
Дипломная работа - Компьютеры, программирование
Другие дипломы по предмету Компьютеры, программирование
°ются новые значения с тем, чтобы охватить весь возможный интервал изменения яркости, в данном случае [0, 255]. При этом контраст существенно увеличивается (рис. 7, б). Преобразование уровней яркости осуществляется по формуле
gi = с + dfi,
Выражение 4.
где fi - старое значение яркости i-го пиксела; gi - новое значение; c, d - коэффициенты. Для рис. 7, а fmin = 6,fmax = 158. Выберем c и d таким образом, чтобы gmin = 0, gmax = 255. Из формулы 4 получаем c = -10,01; d = 1,67.
Еще более можно улучшить контраст, используя нормализацию гистограммы (рис. 8), когда на весь максимальный интервал уровней яркости [0, 255] растягивается не вся гистограмма, лежащая в пределах от fmin до fmax, а её наиболее интенсивный участок (fmin', fmax'), из рассмотрения исключаются малоинформативные хвосты. На рис. 8, б исключено 5 % пикселов.
Целью выравнивания гистограммы (эту процедуру называют также линеаризацией и эквализацией - equalization) является такое преобразование, при котором в идеале все уровни яркости приобрели бы одинаковую частоту, а гистограмма яркостей отвечала бы равномерному закону распределения (рис.9).
Рис. 9. Гистограмма, отвечающая равномерному закону распределения
Пусть изображение имеет формат: N пикселов по горизонтали и M по вертикали, число уровней квантования яркости равно J. Общее число пикселов равно N M, на один уровень яркости попадает в среднем n0 = N M/J пикселов. Например, N = M = 512, J = 256. В этом случае n0 = 1 024. Расстояние ?f между дискретными уровнями яркости от fi до f i+1 в гистограмме исходного изображения одинаковое, но на каждый уровень выпадает различное число пикселов. При эквализации гистограммы расстояние ?gi между уровнями gi и gi+1 различно, но число пикселов на каждом уровне в среднем одинаковое и равно no. Алгоритм эквализации несложен. Пусть уровнями с малой яркостью обладает небольшое количество пикселов, как на рис. 10, а. Например, уровень яркости 0 на исходном изображении имеют 188 пикселов, уровень 1 - 347 пикселов, уровень 2 - 544 пиксела. В сумме это 1 079 пикселов, т. е. приблизительно n0. Присвоим всем этим пикселам уровень 0. Пусть на исходном изображении число пикселов с уровнями яркости 3 и 4 в сумме приблизительно также равно n0. Этим пикселам присваивается уровень 1. С другой стороны, пусть число пикселов с уровнем 45 на исходном изображении составляет 3 012, т. е. приблизительно 3n0. Всем этим пикселам присваивается некоторый одинаковый уровень gi, не обязательно равный 45, а соседние два уровня остаются незаполненными. Эти процедуры повторяются для всех уровней яркости. Результат эквализации можно видеть на рис. 10, б.
а б
Рис. 10. Эквализация гистограммы
В каждом конкретном случае выбирают ту процедуру преобразования гистограмм, которая приводит к наилучшему, с точки зрения пользователя, результату.
Процедуру видоизменения гистограммы можно рассматривать как по пиксельное преобразование входной яркости fj, f0 <= f <= fj, в выходную яркость gk, g0 <= gk <= gK, в результате которого исходное распределение вероятностей P{fj} переходит в распределение вероятностей P{gk}, имеющее желаемую форму. Очевидно, что сумма вероятностей яркостей всех пикселов должна равняться единице:
Вероятность попадания исходной яркости f i в интервал от 0 до m должна равняться вероятности попадания яркости преобразованного изображения gk в интервал от 0 до n для всех m <= J, n < =K:
В случае конкретного изображения распределение в левой части заменяют на гистограмму H(fj), поэтому
Решая это уравнение, можно найти требуемое преобразование gk=T{fj}. Решение записывается в виде таблицы, в которой для каждого входного уровня fj указывается соответствующий выходной уровень gk.
2. Линейная пространственно-инвариантная фильтрация изображений
Реальные изображения наряду с полезной информацией содержат различные помехи. Источниками помех являются собственные шумы фотоприемных устройств, зернистость фотоматериалов, шумы каналов связи. Наконец, возможны геометрические и радиометрические искажения, изображение может быть расфокусировано (но расфокусировка не типична для спутниковых изображений с разрешением 10 м и более); для изображений с разрешением 1 м и менее турбулентность атмосферы приводит к размыванию мелких деталей при коротких экспозициях; при экспозициях в несколько секунд искажения можно описать первым членом ряда 5
Выражение 5
при h1(x, y) ~ exp [-(x2 + y2)/?].
.1 Пространственные инвариантные операторы
Модель искаженного помехами непрерывного изображения имеет вид
f(x, y) = m(x, y) Fs(x, y) + n(x, y),
где f(x, y) - искаженное изображение; m(x, y) - мультипликативная помеха, модулирующая изображение по яркости; F - функционал, описывающий геометрические и радиометрические искажения, а также расфокусировку; s(x, y) - исходное изображение; n(x, y) - аддитивная помеха, накладывающаяся на изображение. Модуляция спутникового изображения по яркости может наблюдаться из-за того, что атмосфера над различными точками Земли имеет разную прозрачность, восходящее излучение от этих точек проходит различный путь в атмосфере.
При реставрации изображений необходимо восстановить исходное изображение. Выше рассм