Исследование устойчивости алгоритмов приема к изменению помехи

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



отки

Для аддитивной нормальной помехи с нулевым средним и дисперсией ?2, такой, что её распределение равно

, (14)

из (8) имеем

. (15)

В этом случае алгоритм (13) совпадает с корреляционной обработкой, и решение о наличии сигнала принимается, когда выполняется нижеследующее условие

. (16)

В случае лапласовской аддитивной помехи со средней мощностью ?2 и распределением

. (17)

Характеристика нелинейного преобразования выглядит так

, (18)

т.е. фактически является характеристикой идеального ограничителя.

Таким образом, если перед коррелятором поставить идеальный ограничитель, то получим обнаружитель детерминированного сигнала, причём асимптотически оптимальный для лапласовской помехи, а решение о наличии сигнала будет приниматься при выполнении условия

. (19)

Теперь предположим, что вместо распределения имеем распределение , т.е. изменяются лишь параметры асимптотически нормального распределения.

Тогда среднее и дисперсия статистики (13) при гипотезе Н, когда выборка помехи принадлежит новому распределению

, (20)

, (21)

где .

Соответственно при альтернативе К, когда выборка xi принадлежит распределению , среднее значение статистики записывается как

(22), и при

, (23)

где , (24)

тогда имеем

(25)

Соответственно дисперсия статистики (13) при альтернативе К и тех же условиях:

, (26)

т.е. определяется согласно (21). Асимптотически оптимальный алгоритм обнаружения детерминированного сигнала на фоне помех с распределением , получаем из (13) подстановкой g (x) (24) вместо f (x), а именно

. (27)

Тогда параметры данной статистики равны:

, (28)

. (29)

Чтобы охарактеризовать устойчивость алгоритма (14), найдём его коэффициент асимптотической относительной эффективности ?, когда действует помеха с распределением по отношению к алгоритму (27). ? можно определить как произведение возведённых в квадрат отношений среднего значения и дисперсии для рассматриваемого алгоритма, тогда в данном случае имеем:

. (30)

Если рассматриваемые в алгоритмах распределения помех симметричны относительно нуля, тогда выполняется (28) и

. (31)

Рассмотрим несколько примеров.

Если , то алгоритм совпадает с линейным алгоритмом, оптимальным при нормальной аддитивной помехе с

. (32)

Пусть линейный алгоритм используется для обнаружения детерминированного сигнала на фоне аддитивной помехи с распределением Лапласа с дисперсией [см. (17)]:

, (33)

и имеем , тогда по формуле (31):

. (34)

Видно, что асимптотическая эффективность линейного оптимального при нормальной помехе алгоритма снижается в два раза при его использовании для обнаружения сигнала на фоне лапласовской помехи.

Если , то алгоритм совпадает с асимптотически оптимальным алгоритмом обнаружения детерминированного сигнала на фоне аддитивной лапласовской помехи. Пусть этот алгоритм используется для обнаружения детерминированного сигнала на фоне аддитивной нормальной помехи с дисперсией ?2, тогда и по формуле (31) имеем:

. (35)

2.2 Ранговые алгоритмы обнаружения сигналов на фоне независимых помех

В случае ранговых и знаково-ранговых алгоритмов обнаружения сигналов при конечных размерах выборки синтезу оптимальных по критерию Неймана-Пирсона алгоритмов обнаружения препятствуют непреодолимые математические трудности, что является причиной фактически эвристического выбора того или иного рангового метода, избежать такого выбора помогает асимптотический подход.

При определённых условиях, а именно при ограничениях на структуру сигнала и помехи, существуют асимптотически наиболее эффективные ранговые алгоритмы обнаружения сигналов, эквивалентные по характеристикам обнаружения неранговым алгоритмам, оптимальным по критерию Неймана-Пирсона.

Введём случайную величину

, (36)

где F1 - интегральная функция распределения, которому принадлежит выборка xi. Она распределена равномерно на интервале (0, 1). АО ранговые алгоритмы обнаружения сигналов на фоне независимых помех можно получить из АО неранговых алгоритмов заменой

, (37)

где Ri - ранг элемента xi выборки размера n.

Используя это, из (14) можно получить асимптотически оптимальное ранговое правило обнаружение детерминированного сигнала с помощью замены xi на :

. (38)

Сформулируем данное правило для различных типов помех.

Для аддитивной помехи согласно (16) имеем:

. (39)

В случае нормальной помехи

. (40)

где - функция, обратная интегральной функции нормального распределения (интеграла Лапласа), таким образом, правило формулируется:

. (41)

При лапласовской помехе можно получить

, (42)

соответственно правило преобразуется к виду:

. (43)

Устойчивость же АО ранговых алгоритмов так же можно охарактеризовать коэффициентом относительной асимптотической эффективности. Если при обнаружении детерминированного сигнала на фоне помехи с распределением u1 (x; 0) испол