Теория статистики

Вопросы - Экономика

Другие вопросы по предмету Экономика

?т, прогнозирование непосредственно по исх модели приведет к нарушению 1 из основных условий прогнозирования, а именно независимости факторных признаков. Т.о., если осущ прогнозирование по модели данного вида, то это приводит к сильному возрастанию дисперсии к-тов регрессии. И значит расчеты не м б пригодны для построения прогнозов. Наличие автокорреляции часто приводит к возникновению ложной связи между прогнозируемым пок-лем и отобранными факторными признаками. Исключение авторегрессии м осущ неск методами: (см вопрос 8)

1. метод последовательных и конечных разностей

. метод отклонений эмпирических значений от выровненных по уравнению тренда

. метод Фриша - Воу

Чтобы исключить автокорреляцию и реализовать прогноз методом последовательных разностей, модель связных рядов строят не по исх значениям признака, а по цепным абс приростам данных признаков. При этом теряются не только прогностические, но и познавательные св-ва таких моделей, тк в обоих случаях исключается основная тенденция развития.

Более сильными прогнозными св-вами обладают модели, в кот в кач-ве дополнительного фактора исп время (модели методом Фриша-Воу). Но в этом случае прогнозные св-ва модели будут базироваться на том, что все факторные признаки описываются только одной ф-ой тренда. Фактор времени заводится в линейной форме. На практике возможно допущение, что фактор времени опред не линейной функцией. Это допущение возможно в случае, если на основе перебора различных форм трендовых моделей исследователем доказано, что большинство (70%), если не все факторные признаки и результативный изменяются по 1 и тому же полиному, отличному от линейного.

В отд случаях для расширения прогностических св-в исходных данных и исключения автокорреляции идут на значительное увеличение исходных наблюдений. То исп-ется искусственный метод заводо-лет. Модели, построенные по связным рядам динамики, обладают слабыми прогностическими св-вами и м б исп-ны для построения краткосрочных прогнозов. А в отд случаях - среднесрочных, при выполнении след условий:

. все факторные признаки и моделируемый д иметь тенденцию, описываемую линейным трендом.

. Наличие дост длинных рядов динамики с тем, чтобы получить ряды к-тов регрессии, на основе которых определять прогнозные оценки факторных признаков с последующим включением их в прогнозную модель.

 

. Оценка точности и надежности прогнозов

 

О точности прогн. можно говорить лишь как об интервале ожидаемых результатов. Надежность прогноза - оценка доверит интервалов прогноза для заданной вероятности его осуществления. При оценке точности необходимо учитывать время упреждения, надежность, величину ошибки прогноза. Эмпирической мерой точности прогноза, служит величина его ошибки, которая определяется как разность между прогнозными и фактическими значениями исследуемого показателя (СКО, мах 9,9%) Данный подход возможен только в двух случаях:

а) период упреждения известен, уже закончился, и исследователь располагает необходимыми фактическими значениями прогнозируемого показателя; б) строится ретроспективный прогноз, то есть рассчитываются прогнозные значения показателя для периода времени, за который уже имеются фактические значения.

Абсолют. и относит. ошибки прогноза м.б. рассчитаны в случае наличия данных ретроспективного прогноза.

Все показатели оценки точности статистических прогнозов условно можно разделить на три группы:

аналитические; - сравнительные; - качественные.

Аналитические показатели точности прогноза позволяют количественно определить величину ошибки прогноза. К ним относятся: Абсолютная ошибка прогноза (?*) определяется как разность между эмпирическими и прогнозными значениями признака и вычисляется по формуле: , где: - прогнозное значение признака; уt - фактическое значение признака

Относительная ошибка прогноза (dош) может быть определена как отношение абсолютной ошибки прогноза (?*):

а) к фактическому значению признака (уt):

 

 

б) к прогнозному значению признака :

Поэтому на практике иногда определяют не ошибку прогноза, а некоторый коэффициент качества прогноза (Кк), который показывает соотношение между числом совпавших (с) и общим числом совпавших (с) и несовпавших (н) прогнозов и определяется по формуле: Кк = с/(с+н), [0;1]

Средним показателем точности прогноза является средняя абсолютная ошибка прогноза , которая определяется как средняя арифметическая простая из абсолютных ошибок прогноза по формуле вида:

 

,

 

где: n - длина временного ряда.

Для оценки точности прогноза используется средняя квадратическая ошибка прогноза, определяемая по формуле: (при прогн методом экстраполяции трендов или методами, содержащими полиномы различн степеней, в знаменателе будет (n-k-1), k- число параметров модели)

 

, [0; ] , [0; ]

 

Размерность средней квадратической ошибки прогноза также соответствует размерности изучаемого признака. Между средней абсолютной и средней квадратической ошибками прогноза существует следующее примерное соотношение: .

Определяют среднюю ошибку аппроксимации:. Данный показатель является относительным показателем точности прогноза и не отражает размерность изучаемых признаков, выражается в процентах и на практике используется для сравнения точности прогнозов полученных как по различным моделям, так и по различным объе