Теория статистики
Вопросы - Экономика
Другие вопросы по предмету Экономика
еднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу: ИСС = Суммарное значение или объем осредняемого признака / Число единиц или объем совокупности
Перечисленные средние объединяются в общей формуле средней степенной (при различной величине k):
, - средняя величина исследуемого признака; - i-й вариант осредняемого признака, - вес i-го варианта
Свойства средней арифметической:
1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты: . 2. Сумма отклонений индивидуальных значений признака от средней арифметической равна нулю: . 3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С. 4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же величину. 5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличится или уменьшится в А раз. 6. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая от этого не изменится.
Средняя гармоническая взвешенная - известен числитель исходного соотношения средней, но неизвестен его знаменатель:
Средняя гармоническая невзвешенная может использоваться вместо взвешенной в тех случаях, когда значения wi для единиц совокупности равны (например,рабочий день у сотрудников одинаковый).
Средняя геометрическая:
или
Наиболее широкое применение этот вид средней получил в анализе динамики для определения среднего темпа роста.
Средняя квадратическая. В основе вычислений ряда сводных расчетных показателей лежит средняя квадратическая:
- невзвешенная - взвешенная
Наиболее широко этот вид средней используется при расчете показателей вариации.
Структурные средние. Мода представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой. Медианой называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности.
и
. Аналитические показатели временного ряда
На практике для количественной оценки динамики явлений широко применяется ряд основных аналитических показателей. К таким показателям относятся: абсолютный прирост, темп роста и прироста, абсолютное значение одного процента прироста. При этом принято сравниваемый уровень называть отчетным, а уровень, с которым происходит сравнение - базисным.
Абсолютный прирост (?) характеризует размер увеличения (или уменьшения) уровня ряда за определенный промежуток времени. Он равен разности двух сравниваемых уровней и выражает абсолютную скорость роста. В общем случае абсолютный прирост может быть представлен в виде:
где yi - текущий уровень ряда динамики; i = 2,3,…,n; k = 1,2,…,n-1.
При k = 1 от текущего уровня yi вычитается предыдущий уровень yi-1, и получается формула для расчета цепного абсолютного прироста:
базисный абсолютный прирост определяется относительно начального уровня ряда:
Базисный абсолютный прирост определяется не всегда относительно первого уровня, он также может быть определен относительно уровня ряда динамики, принятого за базу сравнения.
Показатель интенсивности изменения уровня ряда - в зависимости от того, выражается ли он в виде коэффициента или в процентах, принято называть коэффициентом роста или темпом роста. Разница между ними заключается только в единице измерения. Коэффициент роста показывает, во сколько раз данный уровень ряда больше базисного уровня (если этот коэффициент больше единицы) или какую часть базисного уровня составляет уровень текущего периода за некоторый промежуток времени (если он меньше единицы). Темпы роста характеризуют отношение двух сравниваемых уровней ряда в виде:
где yi - текущий уровень ряда динамики; i = 2,3,…,n; k = 1,2,…,n-1.
Цепной: Базисный:
где y1 - уровень ряда динамики, принятый за базу сравнения.
Темп прироста характеризует абсолютный прирост в относительных величинах. Определенный в процентах темп прироста показывает, на сколько процентов изменился сравниваемый уровень по отношению к уровню, принятому за базу сравнения:
Если темп роста всегда положительное число, то темп прироста может быть положительным, отрицательным и равным нулю. Зависимость цепного темпа прироста от цепного темпа роста:где Трц - цепной темп роста.
Базисный темп прироста равен отношению базисного абсолютного прироста к уровню ряда, принятому за базу сравнения:Зависимость базисного темпа прироста от базисного темпа роста:
На практике часто проводят сопоставление показателей абсолютного прироста и темпа прироста за одни и те же периоды времени. Для этого рассчитывают абсолютное значение одного процента прироста. Оно представляет собой одну сотую часть базисного уровня и в то же время - отношение абсолютного прироста к соответствующему темпу прироста:
Таким образом, базисные показатели динамики характеризуют окончательный результат всех изменений в уровнях ряда от периода, к которому относится базисный уровень, до данного (i-го) периода. Цепные показатели динамики характеризуют интенсивность изменения уровня от периода к периоду в пре