Разработка методики обучения интегрального исчисления функции двух переменных
Дипломная работа - Педагогика
Другие дипломы по предмету Педагогика
? адекватного восприятия вводимого понятия - опыт, содействующий пониманию всех слов, содержащихся в определении, на наглядно-интуитивном и рабочем уровнях. Перед формулировкой определения двойного интеграла рассматривается задача об объеме цилиндрического тела, вводятся понятия интегральной суммы, диаметра плоской области, делаются ссылки на аналогичные понятия для функции одной переменной, что значительно упрощает понимание вводимого определения.
Теперь обратимся к теоремам и их доказательствам. Теоремы составляют существо математической науки, а их доказательства образуют ее живую ткань. Теоремы, лишенные доказательства, безжизненны, мертвы. Поэтому изучать математику путем усвоения теорем без их доказательства бессмысленно. Понять структуру теоремы, метод ее доказательства и само доказательство помогает математическая логика. Доказательство теоремы, проведенное в полном соответствии с требованиями логики, и есть ее логически строгое доказательство [22].
Нестрогие доказательства должны возникать из строгих путем изъятия из них некоторых частей, которые при необходимости могут быть восстановлены самими учащимися или с помощью преподавателя. Например, не рассмотрены до конца все возможные случаи, при условии, что их рассмотрение происходит аналогично. Или дается лишь общая логическая схема доказательства без углубления в его детали. В самом крайнем случае может быть сообщена лишь общая идея доказательства, полная реализация которой потребует значительных усилий.
Изучение логически строгих математических доказательств составляет ту сторону математики, которая в большей степени развивает, нежели образовывает, воспитывает целеустремленность, волю, настойчивость, развивает культуру и мышление. Кроме того, строгие логические доказательства помогают глубже раскрыть смысл вводимых понятий, овладеть ими и правильно применять на практике, помогают установить логическую структуру всего математического курса и связи между отдельными его частями, что существенно облегчает его запоминание и усвоение по сравнению с лишенным внутренней логики рецептурным методом изложения. Логические доказательства помогают полнее овладеть математическими методами, выработать необходимые для их использования навыки, лучше осознать границы применимости этих методов [22].
Выдающийся математик и педагог академик А.Д. Александров предостерегал, что при чрезмерно высоком уровне логической строгости преподавания математики многие учащиеся не столько усваивают и понимают логику формулировок и доказательств, сколько заучивают их. Одно из средств преодоления этой опасности, по его мнению, состоит в том, чтобы уменьшить число формулировок и особенно доказательств, которые ученик должен знать - выучить, запомнитьтАж Если мы хотим учить логическому мышлению, то и надо учить ему, а не заучиванию готовых рассуждений. Поэтому излагаемые формулировки и доказательства должны рассматриваться скорее как упражнения в логическом мышлении, чем как то, что надо знать [22].
Одной из основных задач всякого педагога является достижение осмысленного усвоения его учениками излагаемого им материала. Абсолютно логически строгое и пошагово безупречное доказательство теоремы не всегда приводит к пониманию учащимися этого доказательства. Ж. Адамар отмечает, что всякое математическое рассуждение, как бы сложно оно ни было, должно мне представляться чем-то единым; у меня нет ощущения, что я его понял, до тех пор, пока я его не почувствовал как единую, общую идею [22].
Таким образом, понимание доказательства теоремы не сводится к пониманию и проверке правильности каждого шага формального доказательства, а достигается пониманием той общей идеи, которая привела именно к этой последовательности шагов. Можно использовать этот факт для проверки понимания и усвоения теоремы. Для прояснения этой идеи невозможно обойтись без нестрогих, интуитивных соображений и образов. Интуитивные аспекты доказательства той или иной конкретной теоремы, а также целой математической теории помогают учащимся лучше понять их строгую логику и исключительно важны для преподавания.
Важную роль строгая доказательность математического курса играет и в формировании научного мировоззрения, в воспитании его основы, которую образует безусловное уважение к установленной истине, требование доказывать то, что выдвигается в качестве истины, не допуская подмены доказательства ни верой, ни ссылкой на авторитет.
Что же касается проблемы логической строгости математических доказательств в процессе преподавания математики будущим учителям в педвузе, то здесь уместно вспомнить слова А. Пуанкаре по этому поводу: Имеются ученики, не столь многочисленные, которые должны стать учителями. Последние должны дойти до конца: для них прежде всего обязательно глубокое и строгое изучение основных принципов. Но отсюда не следует, что в них не следует культивировать интуиции. Ибо они могут составить себе ложное представление о науке, если всегда будут смотреть на нее с одной только стороны, и они не сумеют развить в своих питомцах того качества, которым сами не обладают [22].
Думается, что преподавание математических курсов в педвузе будущим учителям математики должно быть преимущественно строго доказательным. Те, кто в недалеком будущем сами будут обучать математике других, должны как можно большую часть своего предмета изучить обстоятельно и с логически строгими доказательствами. П