Развитие логического мышления учащихся при решении задач на построение

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

µр, чертежный треугольник является комбинацией односторонней линейки, прямого и двух острых углов). Часто также один инструмент используется для выполнения двух (или нескольких) совершенно различных операций (например, линейка используется для построения прямой, проходящей через две заданные точки, и общих касательных к двум данным окружностям). Это дает возможность значительно сократить число используемых инструментов.

Укажем характерные операции для наиболее распространенных в школьной практике чертежных приборов и на те элементы чертежа, которые могут быть получены при однократном их использовании.

Циркуль. Характерная для циркуля операция проведение окружности данным (или произвольным) радиусом с центром в данной (или произвольной) точке.

Таким образом, циркулем могут быть построены:

а) окружность данного радиуса с центром в данной точке (радиус может быть задан двумя точками);

б) дуга окружности данного радиуса с центром в данной точке.

Линейка. Характерная операция для чертежной линейки проведение прямой через две данные точки.

На практике линейкой пользуются также для построения к данной окружности касательной (рис. 8), проходящей через заданную вне ее точку, и для построения общих внешних и внутренних касательных к двум окружностям.

Рис. 8

Теоретически эти операции так же строги, как и проведение прямой через две данные точки. Практическая точность в большинстве случаев вполне удовлетворительна. Этот прием часто используется в чертежных работах и при разметке. Итак, при помощи линейки могут быть построены:

а) прямая, проходящая через две данные точки;

б) отрезок прямой, ограниченный двумя данными точками;

в) луч, проходящий через данную точку и имеющий начало в другой данной точке;

г) касательная к данной окружности, проходящая через данную вне окружности точку;

д) внешние и внутренние касательные к двум данным окружностям.

Чертежный треугольник обладает всеми свойствами односторонней линейки. Следовательно, с помощью чертежного треугольника могут быть получены те же элементы, что и с помощью линейки, а также прямая, проходящая через данную точку и образующая с данной прямой угол, равный одному из углов чертежного треугольника.

Транспортир. Характерной операцией для транспортира является построение точки, лежащей на луче, проходящем через данную на прямой точку и образующем заданный угол с этой прямой (рис. 9).

Рис. 9

Абстрактная характеристика каждого инструмента может быть использованы для выяснения вопроса о разрешимости задач на построение теми или иными инструментами.

С этой целью в теорию геометрических построений вводится понятие класса конструктивных элементов. К этому классу относятся все заданные элементы, а также: прямая, если она определяется двумя конструктивными точками; окружность, если она определяется конструктивным центром и конструктивным радиусом (пара конструктивных точек); точка, лежащая на луче, проходящем через заданную на конструктивной прямой точку и образующем с этой прямой заданный угол, и, наконец, точки, являющиеся пересечением конструктивных линий (прямых и окружностей).

Очевидно, что каждый набор инструментов имеет свой класс К конструктивных элементов.

На основании этого может быть установлен следующий критерий разрешимости задачи на построение.

Если искомый элемент (или элементы) принадлежит классу К, определяемому выбранным набором инструментов, то задача является разрешимой при выполнении этими инструментами конечного числа операций.

Отсюда, естественно, следует, что возможность использования большого числа различных инструментов расширяет, вообще говоря, класс конструктивных элементов и тем самым увеличивает число задач, допускающих точное решение.

В теории геометрических построений вопрос о необходимости привлечения произвольных элементов для решения (точного или приближенного) задач на построение рассматривается в ряде работ; на основании теоремы, утверждающей, что при наличии среди заданных элементов двух различных точек класс конструктивных элементов, полученный при использовании циркуля и линейки, образует счетное, всюду плотное множество, доказывается, что любая задача на построение может быть решена при помощи циркуля и линейки без привлечения произвольных элементов либо точно, либо приближенно с любой степенью точности, если среди заданных элементов имеются по крайней мере две различные точки.

 

2.2.3. Выполнение геометрических построений.

Обучение учащихся геометрическим построениям преследует две цели: обучение выполнению собственно геометрических построений и обучение решению задач на построение.

Естественно, что каждому из этих вопросов в различных классах должно быть уделено различное внимание. Рассмотрим первый из них.

В VI классе основное внимание обращается на обучение учащихся выполнению простейших геометрических построений и их систематическому использованию при формировании и закреплении важнейших понятий: перпендикулярность и параллельность прямых, главнейшие линии в треугольнике, симметрия относительно прямой и т. д.

К концу VI класса учащиеся должны получить уже довольно прочные навыки в решении ряда конструктивных задач, включенных в программу VI класса, ценных с практической точки зрения и необходимых для дальнейшего изучения материала.

К этим построениям относятся различные пр?/p>