Химия

  • 741. Первое начало термодинамики и его применение
    Информация пополнение в коллекции 16.03.2011

    Работу или энергию любого вида можно представить как произведение двух факторов: фактора интенсивности на изменение фактора емкости, называемого также фактором экстенсивности (если фактор интенсивности остается постоянным во время процесса). Так, например, обычная механическая работа равна произведению приложенной силы на приращение пути. Если две системы могут взаимодействовать, то они образуют одну общую систему, причем фактор емкости новой системы равен сумме факторов емкости составляющих ее частей при условии, если факторы интенсивности обеих исходных систем одинаковы. Если факторы интенсивности исходных систем неодинаковы, то в общей системе начинается процесс, протекающий в сторону выравнивания факторов интенсивности за счет изменения соответствующих факторов емкости. Так, например, давления выравниваются за счет изменения объемов. Взаимосвязь между внутренней энергией, работой и теплотой устанавливается на основе первого начала термодинамики. Первое начало термодинамики представляет собой постулат, вытекающий из многовекового опыта человечества. Существует ряд формулировок первого начала термодинамики, которые равноценны друг другу и вытекают одна из другой. Если одну из них рассматривать как исходную, то другие получаются из нее как следствия.

  • 742. Перегонка жидкостей. Ректификация
    Информация пополнение в коллекции 15.10.2011

    Ректификация - массообменный процесс, применяемый для разделения жидких и паро- или газообразных смесей, компоненты которых различаются по температурам кипения. Ректификация - наиболее полное разделение смесей жидкостей, целиком или частично растворимых друг в друге. Процесс заключается в многократном взаимодействии паров с жидкостью - флегмой, полученной при частичной конденсации паров. Процесс ректификации осуществляется при контактировании потоков пара или газа и жидкости, которые имеют разные составы и температуры: пар (газ) имеет более высокую температуру, чем вступающая с ним в контакт жидкость. Движущими силами процесса ректификации являются разности составов и температур контактирующих потоков пара или газа и жидкости. При достаточной продолжительности контакта пар и жидкость могут достичь состояния равновесия, при котором температуры потоков станут одинаковыми; при этом их составы будут связаны уравнениями равновесия. Составы встречных (но не вступивших в контакт) потоков пара и жидкости связаны уравнениями рабочих линий. Такой схеме контактирования потоков пара и жидкости соответствует понятие «теоретической тарелки», или «теоретической ступени контакта».

  • 743. Перемешивание жидких сред
    Контрольная работа пополнение в коллекции 06.06.2011
  • 744. Переработка жидкого топлива
    Курсовой проект пополнение в коллекции 13.11.2009

    Исходное сырье, пройдя теплообменник 1, смешивается с циркулирующим газом гидроочистки и избыточным водород-содержащим газом риформинга и нагревается в первой секции печи 2. Образовавшаяся газосырьевая смесь поступает в реактор гидроочистки 3, где очищается от соединений серы, азота и кислорода. Очищенная парогазовая смесь охлаждается в теплообменнике 1 и холодильнике 4 и поступает в сепаратор гидроочистки высокого давления 5, где разделяется на циркуляционный газ и жидкий гидрогенизат (очищенный бензин). Газ, содержащий водород и сероводород, подается в абсорбер 6, где очищается от сероводорода раствором этаноламина, после чего в виде циркуляционного газа смешивается с сырьем, поступающим на гидроочистку. Гидрогенизат из сепаратора 5 поступает в отпарную колонну 7, где из него удаляют остатки сероводорода, водяные пары и газообразные углеводороды. Стабильный гидрогенизат выводится из нижней части колонны, проходит теплообменник 1, смешивается с водородсодержащим газом риформинга и, пройдя вторую секцию печи 2, поступает в батарею из трех реакторов платформинга 9. Из последнего реактора батареи газопродуктовая смесь проходит теплообменник 1 и холодильник 10 и охлажденная до ЗО°С поступает в сепаратор высокого давления 11 для отделения циркуляционного газа от жидкого катализата. Циркуляционный газ возвращается в систему платформинга и гидроочистки, а нестабильный катализат (бензин) поступает в сепаратор низкого давления 12. Из сепаратора катализат направляется в колонну стабилизации 13, где из него отделяются

  • 745. Переработка нефти
    Информация пополнение в коллекции 12.01.2009

    Крекинг ароматических углеводородов сопровождается деалкилированием и конденсацией. При деалкилировании алкилароматических углеводородов получаются парафины, олефины и алкилароматические углеводороды с более короткими боковыми цепями. Разрыв связи углерод - углерод происходит непосредственно у кольца, но такое деалкилирование не протекает интенсивно, если алкильная цепь содержит менее трех углеродных атомов. Реакционная способность углеводородов возрастает с увеличением молекулярного веса, но все же остается значительно меньшей, чем у изомерных моноалкилбензолов. Инициирование каталитического крекинга алкилароматических углеводородов, так же как и для парафиновых углеводородов, начинается с образования карбоний-иона в результате присоединения протона катализатора. Между молекулами ароматических углеводородов или между ними и олефинами (или другими непредельными углеводородами) происходит конденсация. В результате образуются полициклические ароматические углеводороды вплоть до асфальта и кокса, поэтому при переработке сырья со значительным содержанием полициклических углеводородов при одинаковой степени превращения образуется значительно больше кокса, чем при переработке сырья, содержащего преимущественно моноциклические ароматические углеводороды.

  • 746. Переработка полимерных материалов
    Информация пополнение в коллекции 10.01.2011

    В настоящее время предусматривается дальнейшее улучшение обслуживания населения страны всеми видами транспорта, в том числе и железнодорожным транспортом. Решение этой проблемы возможно не только путем создания новых видов подвижного состава, в которых наравне с техническими показателями учитываются требования экономики, технологичности, технической эстетики и т.д., но также путем повышения эффективности технического обслуживания транспорта, обязательным условием которого является обеспечение быстрого и качественного ремонта подвижного состава. В настоящее время к отремонтированному подвижному составу предъявляются новые, современные требования. Одним из условий их обеспечения является повышение качества покрытий наносимых на детали и узлы салонов подвижного состава. До настоящего времени на железнодорожном транспорте в качестве защитно-декоративных покрытий применялись хромоникелевые покрытия, наносимые гальваническим способом. Эти покрытия дороги, для их создания необходимы дефицитные материалы (медь, никель, хром), технология их нанесения сложна и энергоемка, для ее осуществления необходима организация специального производства гальванических цехов. Кроме того, антикоррозийная стойкость таких покрытий недостаточна: практикой установлено, что ко времени капитального ремонта этот вид покрытий имеет до 25-30% разрушений, что портит эстетический вид подвижного состава железнодорожного транспорта. Предпринимались попытки создания и других видов защитно-декоративных покрытий. Применялись эмалевые и лакокрасочные покрытия. Однако в условиях эксплуатации они не показали преимуществ перед хромоникелевыми. Эмалевые покрытия не обладают достаточной стойкостью в эксплуатации, быстро истираются и выкалываются при периодических нагрузках. Лакокрасочные покрытия при разовом нанесении получаются слишком тонкие (10-20 мкм), поэтому их приходится наносить в несколько слоев, что требует дополнительных затрат материалов и рабочего времени. Отсутствие удовлетворительного технического решения в части создания и ремонта защитно-декоративных покрытий, работающих в специфических условиях салонов пассажирского подвижного состава, стимулировали поисковые работы в этой области. Изучение отечественного и зарубежного опыта применения покрытий на подвижном составе показывает, что наблюдается тенденция отхода от использования в качестве покрытий дорогостоящих дефицитных материалов. В связи с быстрым и эффективным развитием производства полимерных материалов в России и в ряде зарубежных стран в последние годы значительные усилия были направлены на создание защитно-декоративных покрытий из полимеров и композиций на их основе. Покрытия из этих материалов по ряду технико-эксплуатационных показателей превосходят гальванические хромоникелевые покрытия, имеют по сравнению с ними низкую стоимость и отвечают повышенным требованиям эксплуатации на железнодорожном транспорте.

  • 747. Переработка полимеров
    Информация пополнение в коллекции 12.01.2009

    Остановимся теперь подробнее на химическом составе и физической природе этих необычных материалов. Как было отмечено выше, они представляют собой полимерный материал, специальные свойства которого обусловлены введением в него армирующих волокон. Основными материалами, из которых изготовляют армирующие волокна (как мелко нарезанные, так и длинные), являются стекло, графит, алюминий, углерод, бор и бериллий. Самые последние достижения в этой области связаны с использованием в качестве армирующих волокон полностью ароматического полиамида, что обеспечивает более чем 50%-ное уменьшение веса по сравнению с армированными пластиками на основе традиционных волокон. Для армирования также используются и натуральные волокна, такие, как сисал, асбест и пр. Выбор армирующего волокна прежде всего определяется требованиями, предъявляемыми к конечному продукту. Однако стеклянные волокна остаются и по сей день широко используемыми и до сих пор вносят основной вклад в промышленное производство АВП. Наиболее привлекательными свойствами стеклянных волокон являются низкий коэффициент термического расширения, высокая стабильность размеров, низкая стоимость производства, высокая прочность при растяжении, низкая диэлектрическая константа, не горючесть и химическая стойкость. Другие армирующие волокна используют в основном в тех случаях, когда требуются некоторые дополнительные свойства для эксплуатации АВП в специфических условиях, несмотря на их более высокую стоимость по сравнению со стеклянными волокнами.

  • 748. Периодическая система химических элементов Д.И. Менделеева
    Информация пополнение в коллекции 12.01.2009

    *Лантаноиды **Актиноиды

  • 749. Периодическая система элементов Менделеева
    Информация пополнение в коллекции 18.01.2011

    В конце XIX - начале XX века физики доказали, что атом является сложной частицей и состоит из более простых (элементарных) частиц. Были обнаружены:

    • катодные лучи (английский физик Дж. Дж.Томсон, 1897 г.),частицы которых получили название электроны e? (несут единичный отрицательный заряд);
    • естественная радиоактивность элементов (французские ученые - радиохимики А. Беккерель и М. Склодовская-Кюри, физик Пьер Кюри, 1896 г.) и существование б-частиц (ядер гелия 4He2+);
    • наличие в центре атома положительно заряженного ядра (английский физик и радиохимик Э. Резерфорд, 1911 г.);
    • искусственное превращение одного элемента в другой, например азота в кислород (Э. Резерфорд, 1919 г.). Из ядра атома одного элемента (азота - в опыте Резерфорда) при соударении с б-частицей образовывалось ядро атома другого элемента (кислорода) и новая частица, несущая единичный положительный заряд и названная протоном (p+, ядро 1H)
    • наличие в ядре атома электронейтральных частиц - нейтронов n0 (английский физик Дж. Чедвик, 1932 г.).
  • 750. Периодическая система элементов. Периоды, группы, подгруппы. Периодический закон и его обоснование
    Информация пополнение в коллекции 22.11.2009

     

    1. Глинка Н.Л. «Общая химия», Москва , изд. «Интеграл пресс», 2002 г.
    2. Ахметов Н.С. «Актуальные вопросы курса неорганической химии», Москва, изд. «Просвещение», 1991 г.
    3. Макареня А.А., Рысев Ю.В, «Д.И. Менделеев», Москва, изд. «Просвещение», 1988 г.
    4. Ред. Егорова А.С. «Репетитор по химии», Ростов-на-Дону, изд. «Феникс», 2006 г.
    5. Кузьменко Н.Е., Ерёмин В.В., Попков В.А. «Начала химии», Москва, изд. «Экзамен», 2004 г.
    6. Кошель П.А. «Большая школьная энциклопедия. 6-11 кл., Т. 2., Москва, изд. «ОЛМА Пресс», 1999 г.
    7. Авт. Сост. Савина Л.А. Я познаю мир: Детская энциклопедия: Химия, Москва, изд. «АСТ ЛТД», 1988 г.
    8. Химия. 9 класс: Учеб. Для общеобразоват. учеб. заведений. 3-е изд., стереотип. Москва, изд. «Дрофа», 2000 г.
  • 751. Периодический закон и периодическая система химических элементов Д.И. Менделеева
    Информация пополнение в коллекции 09.12.2008

    Д.И. Менделеев сопоставил между собой несходные элементы, расположив все известные элементы в порядке возрастания атомных масс. Приведем последовательность первых четырнадцати элементов: Li Be Br C N O F _ Na Mg Al Si P S Cl … и было подмечено, что при переходе от лития Li к фтору F происходит закономерное ослабление металлических свойств элементов и усиление неметаллических с одновременным увеличением валентности. Переход от фтора F к следующему по значению атомной массы к элементу натрию Na сопровождается скачкообразным изменением свойств и валентности. Причем натрий Na во многом повторяет свойства лития Li будучи типичным одновалентным металлом хотя и более активным. Следующий за натрием магний Mg во многом сходит с бериллием Be (оба двухвалентны, проявляет металлические свойства, но химическая активность обоих выражена слабее, чем у пары литий натрий). Алюминий Al, следующий за магнием, напоминает бор B (валентность равна трем). Как близкие родственники похожи друг на друга кремний Si и углерод C, фосфор F и азот N, сера S и кислород O, хлор Cl и фтор F.

  • 752. Перспективы развития и применения нанотехнологий. углеродные нанотрубки – революция в сфере технолог...
    Доклад пополнение в коллекции 09.12.2008

    Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается. Поэтому есть все основания надеяться, что в скором будущем могут появиться нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь "трос" толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений. Нанотрубки могут выступать не только в роли исследуемого материала, но и как инструмент исследования. На основе нанотрубки можно, к примеру, создать микроскопические весы. Берем нанотрубку, определяем частоту ее собственных колебаний, затем прикрепляем к ней исследуемый образец и определяем частоту колебаний нагруженной нанотрубки. Эта частота будет меньше частоты колебаний свободной нанотрубки: ведь масса системы увеличилась, а жесткость осталась прежней. [Например, было обнаружено, что груз уменьшает частоту колебаний с 3.28 МГц до 968 кГц, откуда была получена масса груза 228 фг (фемтограмм, т.е. 10-15 грамм!)].

  • 753. Перспективы развития и применения нанотехнологий. углеродные нанотрубки – революция в сфере технологии наночастиц
    Информация пополнение в коллекции 12.01.2009

    Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается. Поэтому есть все основания надеяться, что в скором будущем могут появиться нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь "трос" толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений. Нанотрубки могут выступать не только в роли исследуемого материала, но и как инструмент исследования. На основе нанотрубки можно, к примеру, создать микроскопические весы. Берем нанотрубку, определяем частоту ее собственных колебаний, затем прикрепляем к ней исследуемый образец и определяем частоту колебаний нагруженной нанотрубки. Эта частота будет меньше частоты колебаний свободной нанотрубки: ведь масса системы увеличилась, а жесткость осталась прежней. [Например, было обнаружено, что груз уменьшает частоту колебаний с 3.28 МГц до 968 кГц, откуда была получена масса груза 228 фг (фемтограмм, т.е. 10-15 грамм!)].

  • 754. Пиролиз угля
    Информация пополнение в коллекции 09.12.2008

    В настоящее время нет теории, которая позволила бы на основе химического и петрографического состава угля, его структуры предсказать протекание процесса пиролиза и определить состав его продуктов. Поэтому в большинстве случаев пиролиз каждого конкретного угля изучается экспериментально, выясняется влияние параметров процесса на состав и выход его продуктов. С помощью теории в лучшем случае можно дать качественную интерпретацию полученным результатам и построить более или менее адекватную модель процесса. При таком экспериментальном изучении следует, в первую очередь отметить, что термическое разложение углей с различной степенью метаморфизма, и в частности каменных или бурых, протекает по-разному. Поскольку в процессе метаморфизма углей происходит потеря наиболее слабо связанных структурных групп, входящих в состав мацерал, ясно, что угли большей степени метаморфизма должны оказаться более стойкими, чем молодые угли. Как отмечалось, термическое разложение бурых углей начинается при температуре на 50 70 К ниже, чем разложение каменных, а количество летучих, выделяющихся при пиролизе бурых углей, существенно больше, чем при пиролизе каменных.

  • 755. Пищеварение
    Информация пополнение в коллекции 09.12.2008

    Птиалин, подобно остальным ферментам, совершает это превращение, участвуя в процессе в самых малых дозах и почти не затрачиваясь на эту химическую работу. Обстоятельство это имеет огромное значение в экономии организма, сберегая его силы на фабрикацию деятельных пищеварительных веществ; являясь в виде ферментов, эти переваривающие вещества приготовляются отделительными клетками в самых ничтожных количествах. Об общих свойствах ферментов организованных и неорганизованных. Муцин, слепляя частицы разжеванной пищи, способствует образованию подлежащего проглатыванию пищевого кома и, смазывая его снаружи, придает ему скользкость, необходимую для легкого проглатывания и передвижения по глотке и пищеводу. Изучение в отдельности секретов различных слюнных желез путем собирания их через постоянные или временные фистулы показало, что у человека, способностью превращать крахмал в сахар обладает слюна околоушных и подчелюстных желез, но последние оказываются в этом отношении более деятельными. Птиалин с первого же дня жизни находится только в отделении околоушной железы; в соке же подчелюстной железы он появляется на третьем месяце после рождения. Эти факты рядом с тем, что и в панкреатической железе в первые месяцы жизни фермент, превращающий крахмал в сахар, почти совершенно отсутствует, ясно указывают, почему питание младенцев мучнистыми, крахмалистыми веществами является нецелесообразным и вредным. Кроме того, доказано, что при поражении у младенцев полости рта плесневым грибком, известном под названием молочницы, слюна их утрачивает совершенно способность превращать крахмал в сахар. Что касается самого процесса отделения слюны у развитых животных и человека, то он находится под ближайшим заведованием нервной системы. Опыт будничной жизни уже указывает, что слюноотделение находится в ближайшем соотношении с миром психических явлений: с представлениями и душевными движениями. У голодного человека представление о вкусном блюде заставляет течь слюну; вид сена или мяса вызывают у голодной лошади и собаки сильное слюнотечение. Зато, с другой стороны, чувство страха, беспокойства, задерживая слюноотделение, заставляют высыхать рот; вот причина, почему публичные чтецы, ораторы, экзаменующиеся так часто прибегают к стакану воды.

  • 756. Пищевая химия
    Методическое пособие пополнение в коллекции 08.05.2012
  • 757. Пластические массы
    Информация пополнение в коллекции 25.11.2010

    Реактопласт (РП пластические массы на основе жидких или твердых, способных при нагревании переходить в вязкотекучее состояние, реакционноспособных олигомеров (смол), превращающихся в процессе отверждения при повышенной температуре и(или) в присутствии отвердителей в густосетчатые стеклообразные полимеры, необратимо теряющие способность переходить в вязкотекучее состояние. По типу реакционноспособных олигомеров РП подразделяют на фенопласты (на основе фенолоформальдегидных смол), аминопласты (на основе мочевино- и меламино-формальдегидных смол), эпоксипласты (на основе эпоксидных смол), эфиропласты (на основе олигомеров акриловых), имидопласты (на основе олигоимидов или смесей имидообразующих мономеров) и др. Молярная масса олигомеров, тип и количество реакционноспособных групп в них, а также природа и кол-во отвердителя определяют свойства РП на стадиях их получения, переработки в изделия (например, условия, механизм и скорость отверждения, объемные усадки и выделение летучих веществ), а также эксплуатационные свойства изделий. Для регулирования технологических свойств РП наиболее широко используют разбавители, загустители и смазки, а для модификации свойств в отвержденном состоянии - пластификаторы и эластифицирующие добавки (например, жидкие каучуки, простые олигоэфиры), которые вводят в олигомер.

  • 758. Пластмассы
    Информация пополнение в коллекции 22.07.2010
  • 759. Платиновые металлы
    Информация пополнение в коллекции 12.01.2009

    По запасам их Россия занимает второе место в мира после ЮАР(всего в мире 56 тыс.т). Основная добыча сейчас ведётся на полуострове Таймыр. При переработке медно-никелевых руд металлы платиновой группы следуют за никелем и медью по всем технологическим цепочкам, концентрируясь в черновом никеле и черновой меди. На заключительном этапе в процессе электролиза чернового металла платиновые металлы, а также золото и серебро, не переходят в электролит. Они оседают на дно электролитной ванны в виде осадка шлама. Именно он служит основным источником платиновых металлов. Из шлама получают богатые концентраты, а затем (на аффинажных заводах) путём сложных химических реакций и сами металлы. Производство платиновых металлов измеряется в тройских унциях, что равно 31,1г., цены в долларах. Платина всегда дороже золота.

  • 760. Пленкообразователи на основе олигодиенов
    Информация пополнение в коллекции 16.06.2012

    Наличие в цепи модифицированных олигобутадиенов рефкционноспособных функциональных групп и двойных связей обуславливает их способность к отверждению под действием тепла или отверждающих агентов, как из органических, так и водных плёнкообразующих систем. Важнейшим свойством жидких ненасыщенных каучуков является их способность к плёнкообразованию. Сведения о плёнкообразовании модифицированных олигобутадиенов- эпоксидированных каучуков со статистическим распределением ЭГ и продуктов их модификации аминами в литературе крайне ограничены. Ранее показано, что ЭОД со статистическим распределением ЭГ проявляют высокую активность с отвердителями кислотного типа в отличии от широко используемых диеновых эпоксидных смол с концевыми ЭГ. На скорость плёнкообразования каучуков оказывают влияние микроструктура, тип отверждающего и аминирующего агентов, степень модификации и температура отверждения. Нами проведено исследование процесса отверждения ЭОД в присутствии перспективных современных отвердителей -фосфорной (ОФК), борной (БК), лимонной (ЛК), ацетилсалициловой (АЦ), аскорбиновая (АСК), а так же биологически активная азот содержащая карбоновая кислота.