Химия

  • 1041. Серебряно-цинковые источники тока
    Информация пополнение в коллекции 12.01.2009

    Конструкция серебряно-цинковых аккумуляторов существенно отличается от конструкции обычных щелочных или кислотных аккумуляторов. В серебряно-цинковых аккумуляторов положительные пластины изготавливаются из чистого тем или иным способом приготовленного серебра, а отрицательные из окиси цинка в смеси с порошком металлического цинка. Положительные пластины отделены от отрицательных несколькими слоями гидратцелюлозной пленки, применение которой обусловлено тем, что через неё, с одной стороны хорошо диффундирует электролит, а с другой стороны она препятствует миграции коллоидных частиц окислов серебра от положительного электрода к отрицательному и произрастанию дендритов цинка в противоположном направлении.

  • 1042. Серная кислота
    Информация пополнение в коллекции 09.12.2008

    Серная кислота высокой концентрации (практически безводная) не взаимодействует с железом в результате пассивации металла. Явление пассивации связано с образованием на поверхности металла прочной сплошной пленки, состоящей из оксидов или других соединений, которые препятствуют контакту металла с кислотой. Благодоря пассивации можно хранить и перевозить концентрированную серную кислоту в стальной таре. Концентрированная серная кислота пассивирует также аллюминий, никель, хром, титан.

  • 1043. Силикагель и его применение в высокоэффективной жидкостной хроматографии
    Курсовой проект пополнение в коллекции 26.11.2010

     

    1. ДубининМ.М.Физико-химические основы сорбционной техники, 2-е изд. ОНТИ, 1935.
    2. АлексеевскийЕ.В.Общий курс химии защиты, ч. I. ОНТИ Химтеорет., Л., 1935.
    3. НикитинС.Н.Силикагель и его применение в черной металлургии. Металлургиздат, М., 1941.
    4. НеймаркИ.Е., ШейнфайнР.Ю.Силикагель, его получение, свойства и применение. Киев: Наукова думка, 1973. 200с., ил.
    5. ФрейдлинЛ. X. Успехи химии, 1954, 23, 581.
    6. ДзиськоВ.А.Рациональные основы приготовления некоторых окисных катализаторов. Доклад по опубликованным работам, Новосибирск, 1965.
    7. Каталитические свойства веществ. Под редакцией В.А.Ройтера. «Наукова думка», К., 1968.
    8. БеркманС., МореллД., Эглофф Г. Катализ в неорганической и органической химии, книга вторая. Гостоптехиздат, М. Л., 1949.
    9. ОкатовА.Б. ЖПХ, 1929, 2, 21; Коллоидная кремнекислота и ее адсорбционные свойства, Л., Изд-во Военно-технической Академии РККА, 1928.
    10. БерестневаЗ.Я., Корецкая T.A., Kapгин В.А. Коллоидн. журн., 1949, 11, 369.
    11. БерестневаЗ.Я., КорецкаяГ.А., КаргинВ.А. Коллоидн. журн., 1950, 12, 338.
    12. КиселевА.В., ЯшинЯ.И. В кн.: Газовая хроматография. Изд-во Дзержинского филиала ОКБА, 1966, 131.
    13. Основы аналитической химии. В 2 кн. Кн.1. Общие вопросы. Методы разделения: Учебник для вузов/Ю.А.Золотов, Е.Н.Дорохова, В.И.Фадеева и др. Под ред. Ю.А.Золотова. 3-е изд., перераб. и доп. М.: Высш. шк., 2004. 361с.: ил.
    14. ЦветМ.С.// Труды Варшавского общества естествоиспытателей, отд. биологии, 1903, т. 4, с.2032. 2 Snyder L К Kirkland J.J. Introduction to Modern Liquid Chromatography.2-nd edition. J. Wiley, N.Y., 1979. 863 p.
    15. Сорбенты для высокоэффективной жидкостной хроматографии ZORBAX™. Руководство для пользователей. Киев, 2001.
    16. Высокоэффективная жидкостная хроматография в биохимии: Пер. с англ../ Под ред. А.Хеншен и др. М.: Мир, 1988 688с., ил.
    17. СтыскинЕ.Л., ИциксонЛ.Б., БраудеЕ.В. «Практическая высокоэффективная жидкостная хроматография». М.: Химия, 1986, 288с.
    18. КиселевА.В., ЯшинЯ.И.Адсорбционная газовая и жидкостная хроматография. М.: Химия, 1979, 288с.
    19. МашковскийМ.Д.Лекарственные средства. 15-е изд., перераб., испр. и доп. М.: Новая волна, 2006, с.438439.
  • 1044. Силикаты
    Информация пополнение в коллекции 09.12.2008
  • 1045. Сильнейшие яды 20 века
    Информация пополнение в коллекции 25.11.2009

    Синильная кислота выделяется в газообразном состоянии при многих производственных процессах, а также образуется при контакте цианидов с другими кислотами и влагой. Могут быть и отравления цианидами вследствие употребления в пищу большого количества семян миндаля, персика, абрикоса, вишни, сливы и других растений семейства розоцветных или настоек из их плодов. Оказалось, что все они содержат гликозит амигдалин, который в организме под влиянием фермента эмульсина разлагается с образованием синильной кислоты, бензальдегида и 2 молекул глюкозы. Наибольшее количество амигдалина содержится в горьком миндале, в очищенных зернах которого его около 3%. Несколько меньше амигдалина (до 2%) в сочетании с эмульсином содержится в семенах абрикоса. Клинические наблюдения показали, что гибель отравленных наступала обычно после употребления в пищу около 100 очищенных семян абрикоса, что соответствует примерно 1 г амигдалина. Подобно амигдалину отщепляют синильную кислоту такие растительные гликозиды, как линамарин, находящийся в льне, и лауроцеразин, содержащийся в листьях .лавровишневого дерева. Весьма много цианистых веществ в молодых бамбуках и их побегах (до 0,15% сырой массы). В животном мире синильная кислота встречается в секрете кожных желез тысяченожек. Токсичность цианидов для различных видов животных различна. Так, высокая резистентность к синильной кислоте отмечена у холоднокровных, в то время как многие теплокровные животные весьма к ней чувствительны. Что касается человека, то, по-видимому, он более устойчив к действию синильной кислоты, чем некоторые высшие животные. Это подтверждает, например, опыт, поставленный с большим риском для себя известным английским физиологом Баркрофтом, который в специальной камере вместе с собакой подвергался воздействию синильной кислоты в концентрации 18:6000. Опыт продолжался до тех пор, пока собака не впала в коматозное состояние и у нее не появились судороги. Экспериментатор в это время у себя не отмечал каких-либо признаков отравления. Лишь спустя 1015 мин. после извлечения из камеры погибающей собаки у него отмечалось нарушение внимания и тошнота. Имеется немало данных, свидетельствующих об образовании цианидов в организме человека в физиологических условиях. Цианиды эндогенного происхождения обнаружены в биологических жидкостях, в выдыхаемом воздухе, в моче. Считается, что нормальный их уровень в плазме крови может достигать 140 мкг/л. Цианиды могут проникать во внутренние среды организма с отравленной пищей и водой, а также через поврежденную кожу. Очень опасно ингаляционное воздействие летучих цианидов, прежде всего синильной кислоты и хлорциана. Еще в 60-х годах XIX столетия обратили внимание на то, что венозная кровь, оттекающая от тканей и органов отравленных цианидами животных, приобретает алый, артериальный цвет. В дальнейшем было показано, что в ней содержится примерно столько же кислорода, сколько и в артериальной крови. Следовательно, под воздействием цианидов организм теряет способность усваивать кислород. Тем самым тормозится течение нормального процесса тканевого дыхания. Таким образом, блокируя один из железосодержащих дыхательных ферментов, цианиды вызывают парадоксальное явление: в клетках и тканях имеется избыток кислорода, а усвоить его они не могут, так как он химически неактивен. Вследствие этого в организме быстро формируется патологическое состояние, известное под названием тканевой, или гистотоксической, гипоксии, что проявляется удушьем, судорогами, параличами. При попадании в организм несмертельных доз яда дело ограничивается металлическим вкусом во рту, покраснением кожи и слизистых оболочек, расширением зрачков, рвотой, одышкой и головной болью. С другой стороны, если животный организм адаптирован к низкому уровню кислородного обмена, то его чувствительность к цианидам резко снижается. Выдающимся русским фармакологом Н. П. Кравковым в начале этого века был установлен любопытный факт: во время зимней спячки ежи переносят такие дозы цианида калия, которые во много раз превосходят смертельные. Стойкость ежей к цианиду Н. П. Кравков объяснял тем, что в условиях зимней спячки при низкой температуре тела потребление кислорода значительно снижено и животные лучше переносят торможение его усвоения клетками. Способность CN-ионов обратимо тормозить тканевое дыхание и тем понижать уровень обменных процессов неожиданно оказалась весьма ценной для профилактики и лечения радиационных поражений. Это связано с тем, что в механизме повреждающего действия ионизирующих излучений на клеточные структуры ведущую роль играют продукты радиолиза воды, которые окисляют многие макромолекулы, в том числе ферменты тканевого дыхания. Цианиды, обратимо блокируя эти ферменты, защищают их от действия этих биологически активных веществ, образующихся под влиянием радиации. Иными словами, комплекс «цианид фермент» становится относительно устойчивым к облучению. После лучевого воздействия он диссонирует вследствие понижения концентрации CN-ионов в биофазе из-за обезвреживания их в крови и выделения из организма. В качестве цианидного радиозащитного средства наибольшее распространение получил амигдалин.

  • 1046. Сильнодействующие ядовитые вещества. Гидразин и его производные
    Информация пополнение в коллекции 09.12.2008

    Гидразин (NH2NH2) это сильно гигроскопическая жидкость, обладающая заметной способностью поглощать из воздуха углекислоту и кислород. Замерзает гидразин при температуре плюс 1,5, кипит при температуре 113,5 (давление 760 мм рт. ст.). Удельный вес вещества колеблется в зависимости от его агрегатного состояния и температуры окружающей среды. При температуре минус 5 плотность твердого гидразина составляет 1,146, жидкого при температуре 0-1,0253, а при температуре +15-1,0114. По мере дальнейшего возрастания температуры удельный вес соединения уменьшается. Гидразин хорошо растворяется в воде, спиртах, аммиаке, аминах. Он нерастворим в углеводородах и их галоидоироизводных. Водные растворы обладают основными свойствами. Гидразин является сильным восстановителем. Благодаря этому он термодинамически неустойчив и легко разлагается под влиянием катализаторов, при нагревании до высоких температур, при действии излучений. На воздухе горит синим пламенем. При этом выделяется значительное количество энергии.

  • 1047. Симетрія молекул
    Информация пополнение в коллекции 16.12.2010

    Будь-яку молекулу можна віднести до якогось виду симетрії, які ділять на три категорії. Нижча категорія характеризує молекули без осей вищого порядку. Середня з одною віссю вищого порядку. Вища з кількома осями вищого порядку. Види симетрії за характерними ознаками розподіляють на сім сингоній. Сингонією називається група видів симетрії, що має один або декілька подібних елементів симетрії при одинаковій кількості одиничних напрямків. Нижча категорія включає три сингонії триклінну, моноклінну та ромбічну. Середня категорія тригональну, тетрагональну і гексагональну. Вища категорія кубічну сингонію.

  • 1048. Синергизм пищевых добавок
    Информация пополнение в коллекции 24.12.2010

    Пектин для применения в пищевой и фармацевтической промышленности получают кислотной экстракцией из цитрусовых (лайм, лимон, апельсин, грейпфрут), яблочных выжимок, жома сахарной свеклы или из корзинок подсолнечника. Технологическая схема получения пектина предусматривает его очистку после экстракции, осаждение органическими растворителями, сушку, измельчение и стандартизацию. Стандартизация представляет собой процесс модификации свойств пектина, достигаемой физическими и/или химическими способами, с целью приведения их в соответствие с технологическими и рецептурными требованиями производства различных групп пищевых и непищевых продуктов. Пектин является гелеобразователем, стабилизатором, загустителем, влаго-удерживающим агентом, осветлителем, веществом, облегчающим фильтрование и средством для капсулирования, зарегистрирован в качестве пищевой добавки E440. В пищевой промышленности пектин используют в производстве начинок для конфет, фруктовых начинок, кондитерских желейных и пастильных изделий (зефир, пастила, мармелад), молочных продуктов, десертов, мороженого, спредов, майонеза, кетчупа, сокосодержащих напитков и т.д. В фармацевтической и медицинской промышленности пектин используют для капсулирования лекарств, а также для изготовления специальных лечебно-профилактических средств [5].

  • 1049. Синтез 1,3,5-трийодбензола
    Реферат пополнение в коллекции 09.12.2008

    Методом тонкослойной хроматографии сублимата на Silufol UV-254 фирмы Chemapol в пентане было установлено, что в сублимате присутствует 5 различных веществ (Rf равны, соответственно, 0,93, 0,85, 0,71, 0,51, 0,23). Была проведена также тонкослойная хроматография 2,4,6-трийоданилина в тех же условиях, при этом весь 2,4,6-трийоданилин остается на стартовой линии, то есть ни одно из 5 веществ, обнаруженных в продукте сублимации, не является 2,4,6-трийоданилином. С целью выделения 1,3,5-трийодбензола была проведена дробная кристаллизация из этанола. Тонкослойная хроматография продукта кристаллизации показала наличие двух веществ c Rf, равными 0,93 и 0,85, c преобладанием первого. Была проведена повторная перекристаллизация из этанола, тонкослойная хроматография показала наличие только одного вещества с Rf = 0,93. Температура плавления этого вещества составила 1720С, против 1810С из данных [1]. В спектре ЯМР 1Н наблюдается единственный синглет при 7,81 м. д., то есть лежащий в области резонанса ароматических протонов.

  • 1050. Синтез 2,2-диэтоксииндандиона
    Курсовой проект пополнение в коллекции 19.12.2010

    В связи с тем, что обычно ароматический цикл не подвергают разрыву (много соединений с ароматическим циклом легко доступны), то дальнейшую стратегию анализа основывали на разрыве связей пятичленного цикла, чтобы упростить структуру. При этом также реализовывается правило преимущества разрыва связей, находящихся рядом с функциональной группой С=О. В результате Tf4 были получены синтоны 4 и 4'. Для синтона 4 характерны заряды «+», так как он содержит карбонильные атомы С. В соответствии с целью ретросинтетического анализа (прийти к наиболее доступным исходным реагентам) для синтона 4 можно предложить диэтилфталат, поскольку он доступен и его легко получить. Для синтона 4' в качестве реагента целесообразно взять этилацетат, так как этот реактив не только доступен, но и содержит необходимую СН2-метиленовую компоненту и СООEtгруппировку, которую легко удалить гидролизом с последующим декарбоксилированием.

  • 1051. Синтез 4-бром-4’-гидроксибифенила
    Курсовой проект пополнение в коллекции 02.02.2011

    К 19,9 г(0,1 моль) 4-нитробифенила прибавили 60мл хлороформа, 6,5мл (20,2 г; 0,13моль) брома и 0,73г порошкообразного железа, Полученную смесь осторожно нагрели до начала бурной реакции , затем, кипятили в течение 2ч. Добавили еще 0,25г железа и кипятили еще 1ч. Реакционную смесь охладили до комнатной температуры, прибавили к ней водный раствор сульфита натрия (10г Na2SO3 в 50мл воды) и перемешивали полученную смесь для удаления избытка брома. Осадок продукта, окрашенного примесями в серо-коричневый цвет, отфильтровали, промыли водой и высушили на воздухе. Дополнительную порцию продукта получили после упаривания хлороформного раствора и перекристаллизации остатка из уксусной кислоты с добавлением активированного угля. Обе порции объединили и поместили в патрон аппарата Сокслета. Продукт экстрагировали петролейным эфиром(70/100о). Экстракцию продолжали до тех пор, пока петролейный эфир не начал окрашиваться в оранжевый цвет. Получили 4-бром-4-нитробифенил в виде желтоватых кристаллов, т.пл -174-176о. Масса продукта составила 15,34г (выход 61%). Лит.данные [2]: т.пл. 173-176о

  • 1052. Синтез ароматических полиаминосоединений - высокоэффективных мономеров для ПБИ
    Курсовой проект пополнение в коллекции 01.08.2012

    %20[1],%20%d1%82%d0%b5%d0%ba%d1%81%d1%82%d0%b8%d0%bb%d1%8c%d0%bd%d0%be%d0%b9%20%d0%bf%d1%80%d0%be%d0%bc%d1%8b%d1%88%d0%bb%d0%b5%d0%bd%d0%bd%d0%be%d1%81%d1%82%d0%b8%20<http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BA%D1%81%D1%82%D0%B8%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D1%80%D0%BE%D0%BC%D1%8B%D1%88%D0%BB%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C>%20[2],%20%d1%81%d0%b5%d0%bb%d1%8c%d1%81%d0%ba%d0%be%d0%bc%20%d1%85%d0%be%d0%b7%d1%8f%d0%b9%d1%81%d1%82%d0%b2%d0%b5%20<http://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%BB%D1%8C%D1%81%D0%BA%D0%BE%D0%B5_%D1%85%D0%BE%D0%B7%D1%8F%D0%B9%D1%81%D1%82%D0%B2%D0%BE>%20[3]%20%d0%b8%20%d0%bc%d0%b5%d0%b4%d0%b8%d1%86%d0%b8%d0%bd%d0%b5%20<http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B4%D0%B8%D1%86%D0%B8%D0%BD%D0%B0>%20[4],%20%d0%b0%d0%b2%d1%82%d0%be%d0%bc%d0%be%d0%b1%d0%b8%d0%bb%d0%b5-%20[5]%20%d0%b8%20%d1%81%d1%83%d0%b4%d0%be%d1%81%d1%82%d1%80%d0%be%d0%b5%d0%bd%d0%b8%d0%b8%20[6],%20%d0%b0%d0%b2%d0%b8%d0%b0%d1%81%d1%82%d1%80%d0%be%d0%b5%d0%bd%d0%b8%d0%b8%20[7],%20%d0%b2%20%d0%b1%d1%8b%d1%82%d1%83%20(%d1%82%d0%b5%d0%ba%d1%81%d1%82%d0%b8%d0%bb%d1%8c%d0%bd%d1%8b%d0%b5%20%d0%b8%20%d0%ba%d0%be%d0%b6%d0%b5%d0%b2%d0%b5%d0%bd%d0%bd%d1%8b%d0%b5%20%d0%b8%d0%b7%d0%b4%d0%b5%d0%bb%d0%b8%d1%8f,%20%d0%bf%d0%be%d1%81%d1%83%d0%b4%d0%b0,%20%d0%ba%d0%bb%d0%b5%d0%b9%20<http://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B5%D0%B9>%20%d0%b8%20%d0%bb%d0%b0%d0%ba%d0%b8%20<http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%BA>,%20%d1%83%d0%ba%d1%80%d0%b0%d1%88%d0%b5%d0%bd%d0%b8%d1%8f%20%d0%b8%20%d0%b4%d1%80%d1%83%d0%b3%d0%b8%d0%b5%20%d0%bf%d1%80%d0%b5%d0%b4%d0%bc%d0%b5%d1%82%d1%8b).%20%d0%9e%d0%b4%d0%bd%d0%b8%d0%bc%20%d0%b8%d0%b7%20%d0%b8%d0%bd%d1%82%d0%b5%d1%80%d0%b5%d1%81%d0%bd%d1%8b%d1%85%20%d0%ba%d0%bb%d0%b0%d1%81%d1%81%d0%be%d0%b2%20%d0%bf%d0%be%d0%bb%d0%b8%d0%bc%d0%b5%d1%80%d0%be%d0%b2%20%d1%8f%d0%b2%d0%bb%d1%8f%d1%8e%d1%82%d1%81%d1%8f%20%d0%bf%d0%be%d0%bb%d0%b8%d0%b1%d0%b5%d0%bd%d0%b7%d0%b8%d0%bc%d0%b8%d0%b4%d0%b0%d0%b7%d0%be%d0%bb%d1%8b%20(%d0%9f%d0%91%d0%98).%20%d0%ad%d1%82%d0%be%20%d1%81%d0%b2%d1%8f%d0%b7%d0%b0%d0%bd%d0%be%20%d1%81%20%d1%82%d0%b5%d0%bc,%20%d1%87%d1%82%d0%be%20%d0%be%d0%bd%d0%b8%20%d0%be%d0%b1%d0%bb%d0%b0%d0%b4%d0%b0%d1%8e%d1%82%20%d0%b2%d1%8b%d1%81%d0%be%d0%ba%d0%b8%d0%bc%d0%b8%20%d0%bc%d0%b5%d1%85%d0%b0%d0%bd%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%bc%d0%b8%20[8]%20%d0%b8%20%d0%b4%d0%b8%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%bc%d0%b8%20%d1%81%d0%b2%d0%be%d0%b9%d1%81%d1%82%d0%b2%d0%b0%d0%bc%d0%b8%20[9],%20%d1%82%d0%b5%d1%80%d0%bc%d0%be-%20%d0%b8%20%d1%82%d0%b5%d0%bf%d0%bb%d0%be%d1%81%d1%82%d0%be%d0%b9%d0%ba%d0%be%d1%81%d1%82%d1%8c%d1%8e%20[10,%2039],%20%d0%be%d0%b3%d0%bd%d0%b5%d1%81%d1%82%d0%be%d0%b9%d0%ba%d0%be%d1%81%d1%82%d1%8c%d1%8e%20[11].%20%d0%92%d1%8b%d1%88%d0%b5%d0%bf%d0%b5%d1%80%d0%b5%d1%87%d0%b8%d1%81%d0%bb%d0%b5%d0%bd%d0%bd%d1%8b%d0%b5%20%d1%81%d0%b2%d0%be%d0%b9%d1%81%d1%82%d0%b2%d0%b0%20%d0%bf%d1%80%d0%b5%d0%b4%d0%be%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d1%8f%d1%8e%d1%82%20%d0%b8%d1%85%20%d0%b8%d1%81%d0%bf%d0%be%d0%bb%d1%8c%d0%b7%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5%20%d0%b2%20%d1%80%d0%b0%d0%b7%d0%bb%d0%b8%d1%87%d0%bd%d1%8b%d1%85%20%d0%be%d0%b1%d0%bb%d0%b0%d1%81%d1%82%d1%8f%d1%85%20%d1%82%d0%b5%d1%85%d0%bd%d0%b8%d0%ba%d0%b8%20%d0%b2%20%d0%ba%d0%b0%d1%87%d0%b5%d1%81%d1%82%d0%b2%d0%b5%20%d0%b2%d1%8b%d1%81%d0%be%d0%ba%d0%be%d1%82%d0%b5%d0%bc%d0%bf%d0%b5%d1%80%d0%b0%d1%82%d1%83%d1%80%d0%bd%d1%8b%d1%85%20%d0%b2%d0%be%d0%bb%d0%be%d0%ba%d0%be%d0%bd,%20%d1%81%d0%b2%d1%8f%d0%b7%d1%83%d1%8e%d1%89%d0%b8%d1%85%20%d0%b8%20%d0%b0%d0%b1%d0%bb%d1%8f%d1%86%d0%b8%d0%be%d0%bd%d0%bd%d1%8b%d1%85%20%d0%bc%d0%b0%d1%82%d0%b5%d1%80%d0%b8%d0%b0%d0%bb%d0%be%d0%b2,%20%d0%b0%d0%b4%d0%b3%d0%b5%d0%b7%d0%b8%d0%b2%d0%be%d0%b2%20%d0%b8%20%d0%bf%d0%b5%d0%bd%d0%be%d0%bf%d0%bb%d0%b0%d1%81%d1%82%d0%be%d0%b2%20%d0%b8%20%d1%80%d1%8f%d0%b4%d0%b0%20%d0%b4%d1%80%d1%83%d0%b3%d0%b8%d1%85%20%d0%b8%d0%b7%d0%b4%d0%b5%d0%bb%d0%b8%d0%b9,%20%d0%ba%d0%be%d1%82%d0%be%d1%80%d1%8b%d0%b5%20%d0%bc%d0%be%d0%b3%d1%83%d1%82%20%d0%b4%d0%bb%d0%b8%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d0%be%20%d1%8d%d0%ba%d1%81%d0%bf%d0%bb%d1%83%d0%b0%d1%82%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d1%82%d1%8c%d1%81%d1%8f%20%d0%bf%d1%80%d0%b8%20200-300%c2%b0%d0%a1,%20%d1%81%d0%be%d1%85%d1%80%d0%b0%d0%bd%d1%8f%d1%8f%20%d0%bf%d1%80%d0%b8%20%d1%8d%d1%82%d0%be%d0%bc%20%d1%81%d0%b2%d0%be%d0%b8%20%d1%81%d0%b2%d0%be%d0%b9%d1%81%d1%82%d0%b2%d0%b0.%20%d0%9f%d0%91%d0%98%20%d1%82%d0%b0%d0%ba%20%d0%b6%d0%b5%20%d0%bd%d0%b0%d1%85%d0%be%d0%b4%d1%8f%d1%82%20%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd%d0%b5%d0%bd%d0%b8%d0%b5%20%d0%b2%20%d0%bf%d0%be%d0%bb%d1%83%d1%87%d0%b5%d0%bd%d0%b8%d0%b8%20%d0%bf%d1%80%d0%be%d1%82%d0%be%d0%bd%d0%be%d0%bf%d1%80%d0%be%d0%b2%d0%be%d0%b4%d1%8f%d1%89%d0%b8%d1%85%20%d0%bc%d0%b5%d0%bc%d0%b1%d1%80%d0%b0%d0%bd%20[%d0%bf%d0%be%d0%bb%d0%b8%d0%bc%d0%b5%d1%80%d1%8b%20%d1%81%20%d0%b8%d0%be%d0%bd%d0%be%d0%b3%d0%b5%d0%bd%d0%bd%d1%8b%d0%bc%d0%b8%20(%d0%b4%d0%b8%d1%81%d1%81%d0%be%d1%86%d0%b8%d0%b8%d1%80%d1%83%d1%8e%d1%89%d0%b8%d0%bc%d0%b8%20%d0%bd%d0%b0%20%d0%b8%d0%be%d0%bd%d1%8b)%20%d0%b3%d1%80%d1%83%d0%bf%d0%bf%d0%b0%d0%bc%d0%b8,%20%d0%be%d0%b1%d1%80%d0%b0%d0%b7%d1%83%d1%8e%d1%89%d0%b8%d0%b5%20%d0%b2%d0%be%d0%b4%d0%be%d0%bd%d0%b5%d1%80%d0%b0%d1%81%d1%82%d0%b2%d0%be%d1%80%d0%b8%d0%bc%d1%8b%d0%b5%20%d0%b8%d0%be%d0%bd%d0%be%d0%be%d0%b1%d0%bc%d0%b5%d0%bd%d0%bd%d1%8b%d0%b5%20%d0%bc%d0%b5%d0%bc%d0%b1%d1%80%d0%b0%d0%bd%d1%8b%20%d0%b7%d0%b0%20%d1%81%d1%87%d0%b5%d1%82%20%d0%bf%d1%80%d0%be%d1%81%d1%82%d1%80%d0%b0%d0%bd%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d0%be%d0%b9%20%d1%81%d1%88%d0%b8%d0%b2%d0%ba%d0%b8%20%d0%bf%d0%be%d0%bb%d0%b8%d0%bc%d0%b5%d1%80%d0%bd%d1%8b%d1%85%20%d1%86%d0%b5%d0%bf%d0%b5%d0%b9%20[12]].">Полимерные материалы играют все большее значение в жизнедеятельности человека. Они используются в машиностроении <http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BE%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5> [1], текстильной промышленности <http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BA%D1%81%D1%82%D0%B8%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D1%80%D0%BE%D0%BC%D1%8B%D1%88%D0%BB%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C> [2], сельском хозяйстве <http://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%BB%D1%8C%D1%81%D0%BA%D0%BE%D0%B5_%D1%85%D0%BE%D0%B7%D1%8F%D0%B9%D1%81%D1%82%D0%B2%D0%BE> [3] и медицине <http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B4%D0%B8%D1%86%D0%B8%D0%BD%D0%B0> [4], автомобиле- [5] и судостроении [6], авиастроении [7], в быту (текстильные и кожевенные изделия, посуда, клей <http://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B5%D0%B9> и лаки <http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%BA>, украшения и другие предметы). Одним из интересных классов полимеров являются полибензимидазолы (ПБИ). Это связано с тем, что они обладают высокими механическими [8] и диэлектрическими свойствами [9], термо- и теплостойкостью [10, 39], огнестойкостью [11]. Вышеперечисленные свойства предопределяют их использование в различных областях техники в качестве высокотемпературных волокон, связующих и абляционных материалов, адгезивов и пенопластов и ряда других изделий, которые могут длительно эксплуатироваться при 200-300°С, сохраняя при этом свои свойства. ПБИ так же находят применение в получении протонопроводящих мембран [полимеры с ионогенными (диссоциирующими на ионы) группами, образующие водонерастворимые ионообменные мембраны за счет пространственной сшивки полимерных цепей [12]].

  • 1053. Синтез бис-(триметилсилил) диметиламинометил фосфоната
    Курсовой проект пополнение в коллекции 26.01.2011

     

    1. Wozniak L., Chojnowski J. //Tetrahedron Lett., 1989 2465-2547.
    2. Петров К. А., Чаузов В. А., Ерохина Т. С. //Успехи химии, 1974, Т. 43, 2046-2067.
    3. Черкасов Р. А., Галкин В. И. //Успехи химии, 1998, Т. 67, 941-968.
    4. Uziel J., Genet J. P. //Ж. орг. химии, 1997, Вып. 11, 1605-1617.
    5. Кабачник М. М., Ливанцов М. В., Вейц Ю. А., Ливанцова Л. И. //Основы химии фосфорорганических соединений, ч. 2. Москва 2003, Хим. Фак. МГУ, 14-20.
    6. … //Синтез органических препаратов, сб. 12. Москва 1964, 74.
    7. Багдасарян Г. Б., Бадалян К. С., Шежранян М. А., Инджикян М. Г. //Арм. Хим. Ж., 1982, 35, Н. 6, 379-383.
    8. Рудченко В.Ф., Шевченко В. И., Костяновский Р. Г. //Изв АН СССР Хим., 1986, Н. 3, 606-610.
    9. … //Am. Soc., 47, 1351.
    10. Воронков М. Г., Колесова В. А., Згонник В. Н. //Изв АН СССР Хим., 1957, Н. 11, 1364-1367.
    11. Нифантеев Е. Е., Харшан М. А., Лысенко С. А. //Ж. Общей химии, 1993, Н. 4, 776-782.
    12. Ближнюк Н. К., Бондарева Т. А., Протасова Л. Д., Емельянович А. М., Климова Т. А. //Патент № SU1578132.
    13. Низамов И. С., Батиева Е. С., Альфонсов В. А., Мусин Р. З. Пудовик А. Н. //Phosph., Sulfur and Silicon and Relat. Elem., 55 (1991), N. 4, 229-237.
  • 1054. Синтез галогенорганических соединений. Реакция галоформного расщепления
    Дипломная работа пополнение в коллекции 15.12.2011
  • 1055. Синтез диметилэтилкарбинола (2-метилбутанола-2)
    Курсовой проект пополнение в коллекции 08.06.2012

    Смесь перелила в плоскодонную колбу, оставила на неделю, за это время произошло разделение слоев (сверху вниз): прозрачный эфирный слой, белые хлопья, прозрачный водный слой (не густой). Перелила в делительную воронку, смесь опять стала густой. Экстрагировала два раза эфиром (по 25 мл), при этом эфирный слой хорошо отделялся от гелеобразного водного слоя. Соединила эфирные растворы (два прозрачных после экстракции, один светло-желтый), промыла 5% раствором соды (NaHCO3), 2 раза по 25 мл, добавила осушитель (Na2SO4) на 1,5 часа. Провела отгонку эфира на ротационном испарителе (при ~35оС, 10 мин). Осталось около ¼ от объема всего вещества, раствор стал ярко-желтым, немного мутным, добавила осушитель (Na2SO4), оставила на неделю. Добавила 20 мл эфира для экстракции, отфильтровала от осушителя, отогнала эфир на ротационном испарителе (36оС, 6 мин). Провела перегонку с дефлегматором, используя установку на рис. 2. При нагревании в течение 15 минут раствор кипел (из ярко-желтого стал бурым), но температура на термометре не повысилась с комнатной, отгонка не происходила. При создании повышенного давления водоструйным насосом (через отвод аллонжа), температура быстро поднялась, вещество начало перегоняться при 75оС (эта часть была взята для измерения показателя преломления), температура поднялась до 89оС (отогналось еще столько же вещества, как при 75оС). Всего отогналось примерно 3 мл вещества (прозрачное, бесцветное, с запахом), которое использовалось для измерения показателя преломления. До отгонки было предположительно 7 мл вещества.

  • 1056. Синтез жирных кислот
    Контрольная работа пополнение в коллекции 21.03.2010

    ПоказательС56С79С910С1013С1016С1216С1720

    1. Внешний вид и цвет при 20±5ºСПрозрачные маслянистые жидкости, бесцветные или слегка желтоватыеМазеобразные продукты от белого до светло-жёлтого цветаТвёрдый продукт от белого до светло-жёлтого цвета
    2. Цветность по йодной шкале, мг I2/100 см2, не более4,0-6,06,0-9,05,5-7,07,0-10,06,0-8,07,0-8,07,0-11,5
    3. Кислотное число,
    4. мг КОН/г, не более430-500370-410330-370275-300240-260235-265195-210
    5. Эфирное число,
    6. мг КОН/г, не более---5,04,55,06,5
    7. Карбонильное число,
    мг КОН/г, не более---12121214,5
    1. Содержание неомыляемых веществ,
    2. % по массе, не более-1,01,21,52,12,04,5
    3. Температура плавления, ºС----25-3525-3545-53
    4. Температура вспышки, ºС82-97204104125137140173
    5. Температура воспламенения, ºС93-109118118168176185197
    6. Температура самовоспламенения, ºС315-400260260240330345343Примечание: Температуры застывания: 25-35ºС (фракция С10-С16), 45-51°С (С17-С20).
    7. Мощности по производству СЖК оценивались в 0,25 млн. т/год (1984) при загрузке мощностей 50-80%. Возросший интерес к кислотам до С12 и выше С20 стимулирует развитие производства СЖК из нефтехимического сырья. Перечень литературы

    1. Брунштейн Б.А., Клименко В.Л., Цыркин Е.Б., Производство синтетических кислот из нефтяного и газового сырья. Л.: 1970.
    2. Болотин И.М., Милосердое П.Н., Суржа Е.И.. Синтетические жирные кислоты и продукты на их основе, М.: 1970.
    3. Kirk-Othmer encyclopedia, 3 ed., v. 4, N. Y.-[a. о.], 1978, p. 814-71.
    4. Hofmann P., Muller W., «Hydrocarbon Processing», 1981, v. 60, № 10, Sect. 1, p. 151-57.
    5. ГОСТ 23239-89 «Кислоты жирные синтетические фракций С5-С6, С7-С9, С5-С9, С10-С13, С10-С16, С17-С20. Технические условия». ИПК Издательство стандартов, М.: переиздание 1998 г. с изменением №1 (ИУС 5-95).
    6. «Исследование окисления высших альфа-олефинов с целью получения синтетических жирных кислот», Лакеев С.Н., Карчевский С.Г., Майданова И.О., Алексашев В.И., Материал межрегиональной научно-практической конференции «Инновационные процессы в области образования, науки и производства», апрель 2004 г. Россия, Республика Татарстан, г. Нижнекамск.
    7. Н.К. Маньковская, Синтетические жирные кислоты. Получение, свойства, применение. М.: Химия. 1965. 168 с.
    8. «Синтез индивидуальных высших карбоновых кислот», Аминева Г.Г., Саяпова Е.В., Лисицкий В.В., Зимин Ю.С. По материалам конференции «Ломоносов-2009»
  • 1057. Синтез и исследование алкилсалицилатных присадок
    Дипломная работа пополнение в коллекции 11.08.2011

    Реакция алкилирования является реакцией электрофильного замещения и катализируется катализаторами кислотного типа: минеральные и органические кислоты, галогениды металлов, катионнообменные смолы, алюмосиликаты. В качестве катализаторов алкилирования фенола высшими олефинами описаны также хлораты металлов, триэтилаллюминий, молекулярный йод, фенолят алюминия и другие. Широкое применение в производстве присадок, при алкилировании фенола высокомолекулярными олефинами получила также бензолсульфокислота (далее БСК). Её каталитическая активность близка к активности H2SO4 и AlCl3. Будучи сильной кислотой, БСК не обеспечивает селективность процесса алкилирования. В её присутствии образуется около 30% диалкилфенолов, главным образом 2,6-замещённых. Существенным недостатком процесса алкилирования фенолов в присутствии растворимых катализаторов (минеральных и органических кислот, галогенидов металлов и их молекулярных соединений) является необходимость отмывки продуктов реакции от катализатора. При этом образуется значительное количество фенольных сточных вод и возникает проблема их очистки, имеют место повышенные потери продукта. Применение нейтрализующих средств, например, аммиака и удаление катализатора в виде аммонийных солей фугованием не всегда обеспечивает полную очистку продуктов алкилирования от катализатора. Указанных недостатков лишён метод алкилирования фенолов с применением гетерогенных катализаторов (катионообменные смолы, алюмосиликаты, синтетические цеолиты и др.). К тому же указанные катализаторы являются менее сильными кислотами, что в значительной мере обеспечивает селективность процесса. В настоящее время алкилирование фенола олефинами в промышленности осуществляют в реакторах колонного типа на кислотном гетерогенном катализаторе сульфокатионите КУ-2-8, представляющим собой сульфированный сополимер стирола и дивинилбензола. В результате набухания полимера молекулы фенола и олефинов проникают внутрь зёрен, где у активных центров (сульфогрупп) протекает алкилирование. Сульфокатионит в отсутствие полярного растворителя (например, воды) не способен протонировать молекулы олефинов, а следовательно, не может катализировать реакцию алкилирования. В нашем случае среда безводная, однако роль полярного растворителя здесь играет фенол. Молекулы фенола абсорбируются катионитом, и внутри зёрен последнего происходит обмен протонами между SO3H-группой этого катионита и ОН-группой фенола. Именно этот обмен протонами и делает возможным протонирование молекул олефинов, а следовательно и протекание реакции алкилирования на сульфокатионите. Поскольку катионит лучше сорбирует фенол, чем олефины, то внутри зёрен создаётся избыток фенола, что обуславливает образование преимущественно моноалкилфенолов.Количество функциональных групп на поверхности катионита ничтожно мало, в связи с этим ионно-каталитические процессы происходят, главным образом, внутри гранул, чему способствует набухание смол в реагирующих компонентах. Повышение температуры увеличивает скорость алкилирования, что связано с ростом скорости диффузии реагентов внутрь гранул катионитов и увеличением подвижности протонов сульфогрупп. Так, при повышении температуры от 95 до 130 ºС скорость алкилирования увеличивается в 4 раза. Показано, что при повышении температуры от 130 до 150 ºС выход алкилфенолов увеличивается от 64 до 81% с повышением содержания дизамещённых. Количество последних зависит от соотношения фенола и олефинов: с повышением доли фенола образование диалкилпроизводных снижается. Продолжительность контакта реакционной смеси с катионитом определяет глубину превращения. Алкилирование проводят при температуре 120-140 ºС и мольном соотношении реагентов фенол : олефины 1,5÷2 к 1. Перед проведением реакции фенол и олефины должны быть тщательно обезвожены. Это необходимо потому, что при температуре 120-140 ºС вода гидролизует катионит с образованием серной кислоты. Выделившаяся серная кислота катализирует гомогенное алкилирование, что приводит к снижению селективности процесса и образованию кроме целевых моноалкилфенолов ещё и побочных продуктов: ди- и триалкилфенолов. Поэтому гидролиз катионита нежелателен и реагенты должны быть максимально обезвожены. 2.Получение алкилфенолята натрия.Алкилфенолят натрия получают взаимодействием алкилфенола с гидроксидом натрия. Как и всякая реакция нейтрализации, эта реакция сопровождается выделением небольшого количества тепла (до 2,4 ккал/моль).

  • 1058. Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами
    Статья пополнение в коллекции 25.11.2010

     

    1. Керимова У.А., Османов Н.С., Ахмедов М.М., Худавердиев Р.А., Аскерова Т.Я. «Синтез и исследование соединений рения (IV,V) с аминоуксусной кислотой.» //Материалы научной конференции, 2007, с 207
    2. Керимова У.А., Османов Н.С., Ахмедов М.М., Худавердиев Р.А., Аббасов Я.А. « Синтез и свойства комплексов рения (IV) с аминоуксусной кислотой. » //Химические проблемы № 2, 2008, с.277
    3. Basak Sucharita, Mondal Amrita, Chopra Deepak, Rajak Kajal Krishna. «Синтез и структурное исследование новых комплексов Re(3+), использующих альдимины альфа-аминокислот как солиганды.» Polyhedron N 13, 2007, т.26, стр.3465-3470.
    4. Панюшкин В.Т., Буков Н.Н., Болотин С.Н., Волынкин В.А. Координационная химия природных аминокислот. М.: Наука. 2007. 247 с.
    5. Буков Н.Н., Колоколов Ф.А., Панюшкин В.Т. Комплексные соединения редкоземельных элементов с аспарагиновой кислотой. // Журнал общей химии. 2003. Т. 73. Вып. 10. С. 1619-1621.
    6. Гагиева С.Ч., Таутиева М.А., Хубулов А.Б. Координационные соединения рения(V) с серосодержащими аминокислотами. XXIII Международная Чугаевская конференция по координационной химии. 4-7 сентября 2007, г. Одесса. Тезисы докладов. Киев: Киевский университет, 2007. С. 561.С. 354
    7. Таутиева М. А., Гагиева С.Ч., Алиханов В. А. Синтез и исследование строения внутрикомплексных соединений рения (V) с цистеином и метионином. // Известия вузов. Северо-Кавказский регион. Естественные науки. Приложение. 2006. №12. С. 57-59.
    8. Павлова К.В., Яцимирский К.Б. Кинетика реакций окисления йодида хлоратом калия в присутствий рения. // Журн. неорг. химии. 1965. с.10271032.
  • 1059. Синтез и исследование поливольфрамофенилсилоксанов, содержащих атомы вольфрама в степени окисления +6
    Курсовой проект пополнение в коллекции 12.03.2011

     

    1. Андрианов, К.А. Технология элементоорганических мономеров и полимеров./ К.А. Андрианов, Л.М. Хананашвили М. : Химия, 1973. 400с.
    2. Соболевский, М.В. Свойства и области применения кремнийорганических продуктов./ М.В.Соболевский, О.А. Музовская, Г.С. Попелева. М. : Химия, 1975. 295с
    3. Каталитическая активность магнийорганосилоксанов. И.М. Колесников, Г.М. Панченков, К.А. Андрианов, А.А. Жданов, Н.Н. Белов, М.М. Левицкий : Изв.АН ССР. Сер.хим., 1976. - №6, 473 474с.
    4. Свидерский, В.А. деструкция и стабилизация полимеров : тезисы докладов 9-ой конференции./ В.А. Свидерский, Н.А. Ткач. М. : 2001. 172173с.
    5. Талашкевич, Е.А. Твердофазный синтез полиметаллооргансилоксанов : международная научно практическая конфренция./ Е.А. Талашкевич, Е.Ю. Гаденко, Л.В. Шевченко. Находка. : 1999. 3233.
    6. Андрианов, К.А. Методы элементоорганической химии. Кремний. / К.А. Андрианов. М : Наука, 1976. 560с.
    7. Жданов, А.А. Новые проблемы в синтезе и изучении свойст полиметаллоорганосилоксанов.: Тез.док. Всерос. Конф. "Кремний органические соединения. Синтез, свойства, применение". / А.А. Жданов. М : 2000. 113с.
    8. Воронков, М.Г. Гетеросилоксаны. / М.Г. Воронков, Е.А. Малетина, В.К. Роман. Новосибирск. : Наука, 1984. 495с.
    9. Воронков, М.Г. Силоксановая связь. / М.Г. Воронков, В.П. Милешкевич, Ю.А. Южелевский. Новосибирск. : Наука, 1976. 414с.
    10. Борисов, С.Н. Кремнеэлементоорганические соединения./ С.Н. Борисов, М.Г. Воронков, Э.Я. Лукевиц. - Л.:.Химия, 1966. 542с.
    11. Талашкевич Е.А. Получение полиметаллорганосилоксанов методом механохимической активации и исследование их свойств : Автореф. Дис. кан. хим. наук. / Е.А. Талашкевич. Владивосток : 2000. 28с.
    12. Синтез и исследование дикалиевых производных олигодиорганилсилоксан-?, ?-диолов. / Н.П. Шапкин, А.А. Капустина, Н.И. Симанчук, Е.В. Моисеева. Известия вузов. Химия и хим.техн., 1995. Т.38, Вып.3. 24-29с.
    13. Андрианов, К.А. Синтез некоторых полиметаллоорганосилоксанов и изучение их свойств в зависимости от химического состава и строения : Труды Всесоюзн. Электротехн. Института. / К.А. Андрианов, Э.З. Аснович 1966. 7-82с.
    14. Борисов, С.Н. Полидиметилстанносилоксаны./ С.Н. Борисов, Н.Г. Свиридова, - ВМС, 1961. т.3.№1. 50-55с.
    15. Аснович Э.З. Автореф. Дис. канд. хим. наук. / Э.З. Аснович. М. : ВЭИ. 1964. 26с.
    16. Андрианов, К.А. V Всесоюзная конференция по химии и применению кремнийорганических соединений : Тезисы докладов./ К.А. Андрианов, М.А. Сипягина, Н.А. Дюдина, Е.Н. Воронина. - М.:.НИИТЭХИМ, 1980. 237с.
    17. Капустина, А.А. Синтез металлоорганосилоксанов : Хим. и хим. образование, сборник науч. Трудов. / А.А. Капустина, Н.П. Шапкин. 19-20с.
    18. Левицкий, М.М. От полисиланов к полиметаллоорганосилоксанам Тез. Докладов 2-й Всероссийский Карг. Симп. / М.М. Левицкий, Б.Г. Завин, А.И. Чернявский. 2000. 2-94с.
    19. Schmidt, M. Inorg. / M. Schmidt, H. Schmidbaur. Chem.,1967. v.9. 149-151p.
    20. Барашенков, Г.Г. полиметаллодифенилсилоксаны./ Г.Г. Барашенков, Н.Я. Деркач. ЖОХ, 1978. Т.48, вып.5, 1110-1113с.
    21. Шапкин, Н.П. Синтез трициклического молибден (VI) фенилсилоксана./ Н.П. Шапкин, С.В. Гардионов. // Хим. и хим. образование, сборник науч. трудов. 2002. 338-339с.
    22. Левицкий, М.М. Металлоорганосилоксаны и металлосиликаты. Аналоги в особенностях формирования структуры. / М.М. Левицкий, Б.Г. Завин, А.Н. Биляченко.// Хим. и хим. образование, сборник науч. трудов. 24-25с.
    23. Аликовкий, А.В. Синтез поливольфрамафенилсилоксана, содержащего металл в высшей степени окисления. 4-й международный симпозиум./ А.В. Аликовский, С.Г. Красицкая, М.И. Баланов, М.В.Щеблыкина.// Хим. и хим.образование, сборник науч. трудов. 24-25с.
    24. Жданов, А.А. Синтез и исследование свойств полиметаллоорганосилоксанов. / А.А. Жданов, К.А. Андрианов, М.М. Левицкий.// ВМС. 1976. т.18. №10. 2264-2269с.
    25. Шапкин, Н.П. Дис. канд.хим.наук./ Н.П. Шапкин. Владивосток, 1971. 155с.
    26. Щеголихина, Н.А. Дис. канд.хим.наук./ Н.А. Щеголихина. Иркутск, 1981. 122с.
    27. Шапкина, В.Я. Дис. канд.хим.наук./ В.Я. Шапкина. Владивосток, 1983. 146с.
    28. Андрианов, К.А. Синтез полиферроорганосилоксанов и полиферроалюмоорганосилоксанов./ К.А. Андрианов, Т.Н. Ганина, Н.Н. Соколов.// ВМС. 1962. т.4.№5.678-682с.
    29. Жданов, А.А.Исследование в области полиэлементоорганосилоксанов: Дис. докт.хим.наук./ А.А. Жданов.. Москва. ИНЭОС. 1983. 146с.
    30. Жданов, А.А. Особенности синтеза металлосилоксанов каркасной структуры./ А.А. Жданов, О.И. Щеголихина, Ю.А. Молодцова. // Изв.АН РФ. Сер. хим. 1993. - №5. 957-961с.
    31. Воронков, М.Г. Новый способ получения полиметаллофенилсилоксанов. / М.Г. Воронков, А.В. Аликовский, Г.Я. Золотарь.// Докл. АН СССР. 1985. т.281.№4. 858-860с.
    32. Жданов А.А. Новый метод синтеза каркасных и полимерных металлосилоксанов. / А.А. Жданов, Н.В. Сергиенко, Е.С. Транкина. // Изв. АН РФ, сер. хим. 1998. - №12. 2530-2532с.
    33. Завин, Б.Г. Темплантный синтез полиорганосилоксанов на основе галогенметаллосилоксанов./ Б.Г. Завин, А.Ю. Рабкина, В.С. Папков, М.М. Левицкий, Л.И. Кутейникова. // Всерос. Симпозиум, посвященный 80-летию академика Воронкова: Тез. Док. Иркутск, 2001. 21с.
    34. Шапкин, Н.П. Исследование взаимодействия натриевых солей дибутилфосфиновой кислоты и фенилсиликоната с хлоридами некоторых d - металлов. / Н.П. Шапкин, А.В. Аликовский, В.Я. Шапкина. //ЖОХ. 1987. т.57, вып.2. 107-110с.
    35. Аликовский, А.В. О взаимодействии алкилокисей олова с полиорганилсилсесквиоксанами / А.В. Аликовский, Е.Т. Данько, Г.Я. Золотарь. // Изв. вузов. Химия и хим.техн. 2001. т.44. вып.1. 66-69с.
    36. Шапкин, Н.П. Влияние механохимической активации на синтез полиметаллорганосилоксан / Н.П. Шапкин, А.А. Капустина, Е.А. Талашкевич// ЖНХ 2000. т.45. №4. 675-678с.
    37. Типикин, Д.С. Примеры механохимической стабилизации интермедиатов химических реакций. // Ж. Физ.химии. 2002. т.76. №3. 518-520с.
    38. Капустина, А.А. Возможность синтеза полигермано- и полиоловоорганосилоксанов в условиях механохимической активации. / А.А. Капустина, Н.П. Шапкин, Е.Б. Иванова, А.А. Ляхина // ЖОХ. 2005. т.75. вып.4. 610-614с.
    39. Капустина, А.А. Синтез полидиалкилоловоорганосилоксанов методом механохимической активации./ А.А. Капустина, Н.П. Шапкин, С.В. Вернер.// Изв.вузов. химия и хим техн. 2004. т.47. вып.7. 45-50с.
    40. Капустина, А.А. Синтез полиметаллофенилсилоксанов методом механохимической активации. / А.А. Капустина, Н.П. Шапкин, Н.И. Гаврилова, Е.Б. Иванова.// Международный симпозиум "петербургские встречи". С-Пб .: тезисы докладов, 2002. 350с.
    41. Талашкевич, Е.А. Синтез полиферро- и полихромдиметилсилоксанов на основе 1,7- дикалийоксиоктаметилтетрасилоксана в условиях мехаохимической активации. / Е.А. Талашкевич, Н.П. Шапкин, А.А. Капустина// Изв.вузов. химия и хим.техн., 2004. т.47. вып.4. 93-96с.
    42. Жданов, А.А. Элементоорганические металлосодержащие парамагнитные и ферромагнитные полимеры. Сообщение 1. Полиферро- и поликобальтсилоксаны, структура и магнитные свойства. / А.А. Жданов, М.М. Левицкий, О.И. Щеголихина, А.Д. Колбановский, Р.А. Стукан, А.Г. Книжник, А.Л. Бучаченко.// Изв. АН СССР. Сер.хим., 1990. 2512-2518с.
    43. Жданов, А.А. Элементоорганические металлосодержащие парамагнитные и ферромагнитные полимеры. Сообщение 3. Магнитные свойства продуктов термической конденсации полиметаллоорганосилоксанов. / А.А. Жданов, А.Л. Бучаченко, О.И. Щеголихина, М.М. Левицкий. // Изв. АН СССР. Сер.хим.,1991. 778-781с.
    44. Андрианов, К.А. Полиорганоалюмосилоксаны./ К.А. Андрианов, Т.Н. Ганина. // Изв. АН СССР. Отд.хим.наук.,2004. т.47. вып.4. 93-96с.
    45. Верхотин, М.А. Термическая деструкция некоторых полиметаллорганосилоксанов. / М.А. Верхотин, К.А. Андрианов, А.А. Жданов, Н.А. Курашева, С.Р. Рафиков, В.В. Роде.// ВМС., 1976. т.8, №7. 1226-1230с.
    46. Аликовский, А.В. Синтез и исследование полиметаллофенилсилоксанов на основе фенилсилантриолята натрия. / А.В. Аликовский, В.И. Бессонова, Г.Я. Золотарь, С.Г. Краситская. // Изв.Вузов. химия и хим.тех., 1999. т.42.№4. 107-110с.
    47. Аликовский, А.В. Термоокислительная деструкция полиметаллофенилсилоксанов. / А.В. Аликовский, В.И. Бессонова, С.Г. Краситская. // Изв.Вузов. химия и хим.тех., 1993. т.36. вып.9. 58-60с.
    48. Шапкин, Н.П. Полигетеросилоксаны. Химия: строение и свойства./ Н.П. Шапкин, В.И. Бессонова, Г.Я. Золотарь, А.В. Аликовский, С.Г. Краситская, Е.Т. Данько. // Бутлеровские сообщения., 2006. т.9. №4. 49-59с.
    49. Щеблыкина, М.В. Исследование возможности синтеза полиметаллофенилсилоксанов, содержащих металлы в высшей степени окисления.// дипломная работа, 2007. 20с.
    50. Жинкин, Л.Н. Поли-бис(8-хинолинокси)-титанооксиметил-фенилсилоксаны / Л.Н. Жинкин, В.В. Северский, Т.Ф. Алтухова.// Пластмассы, 1969. - №1. 26-29с.
  • 1060. Синтез и исследование функциональных свойств комплексных полифункциональных присадок
    Дипломная работа пополнение в коллекции 11.10.2011

    Перегонка нефти при атмосферном давлении удаляет из неё бензин и дистиллятные компоненты топлива, оставляя мазут, который содержит смазочные масла и гудрон. Дальнейшая перегонка под вакуумом даёт так называемые «вакуумные дистилляты» в верхней части колонны и гудрон в виде остатка. Простая обработка серной кислотой, известью и отбеливающей глиной превращает дистилляты в приемлемые по качеству продукты с низким индексом вязкости. Для производства продуктов с высоким и средним индексом вязкости необходимо использовать определенные виды экстракции растворителями, отделяющими окрашенные, нестабильные и имеющие низкий индекс вязкости компоненты. На конечном этапе проводят депарафинизацию масла (то есть удаляют из него парафины) для получения продукта с температурой застывания от минус 10 ºС до минус 20 ºС. Этот процесс осуществляется путём растворения масла в метилэтилкетоне (МЭК) с последующим охлаждением и фильтрацией [64]. Изготовитель масла может подвергнуть его финишной гидродоочистке (обработке водородом для насыщения им с целью улучшения стабильности), чтобы удалить серу, азот и окрашивающие составляющие. Этот процесс показан на приведённой ниже диаграмме.