Аннотация программы учебной дисциплины «Интеллектуальные системы»

Вид материалаДокументы

Содержание


Аннотация учебной программы дисциплины
Аннотация учебной программы дисциплины
Основные разделы курса
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   12
^

Аннотация учебной программы дисциплины


«Методы оптимизации»

    Основной целью курса является ознакомление с базовыми математическими моделями и освоение численных методов решения классических экстремальных задач, а также знакомство с современными направлениями развития методов оптимизации. В целом материал курса ориентирован на умение правильно классифицировать конкретную прикладную задачу, выбирать наиболее подходящий метод решения и реализовывать его в виде алгоритма и программы.

Для достижения поставленной цели выделяются задачи курса:

Дать студентам представление об областях применения математического программирования и, в частности, линейного, выпуклого и нелинейного программирования.

Помочь им в изучении симплекс – метода, двойственного симплекс – метода, метода возможных направлений, метода Ньютона, градиентных методов, методов штрафов, метода отсечении Гомори, методов нулевого порядка, метода ветвей и границ, декомпозиции Бендерса, метода Келли.

Дисциплина входит в базовую часть общенаучного цикла М1 образовательной магистерской программы «Компьютерное моделирование» направления подготовки магистров 230100 «ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА»

Научить правильно классифицировать конкретную прикладную задачу, выбирать наиболее подходящий метод её решения и реализовывать его в виде алгоритма и программы.

Изучение данной дисциплины базируется на дисциплинах: «Математический анализ», "Алгебра и геометрия", «Математическая логика», «Дискретная математика».

Изучение дисциплины направлено на формирование следующих общекультурных и профессиональных компетенций:
  • ОК-1, ОК-2, ОК-4
  • ПК-1, ПК-5, ПК-6

В результате изучения дисциплины студент должен:

Знать:

- элементы теории сложности для анализа задач математического программирования: линейного, выпуклого, квадратичного и двухуровневого программирования;

- основы теории многогранных множеств;

- базовые понятия, основные определения теории экстремальных задач и численные методы решения;

- современнные подходы к решению задач линейного и выпуклого программирования

Уметь:

- правильно классифицировать прикладную задачу в терминах математического программирования;

- выбирать подходящий метод решения задачи и анализировать скорость его сходимости;

- профессионально работать с готовыми коммерческими программными продуктами для решения задач линейного и выпуклого программирования;

Владеть навыками:

- классическими методами решения задач математического программирования: методом Ньютона, градиентными методами, методом штрафов, симплекс-методом, методом ветвей и границ;

- методами синтеза алгоритмов решения новых классов задач.

Основные разделы курса:
  • Элементы алгоритмической теории экстремальных задач
  • Классификация задач математического программирования
  • Необходимые и достаточные условия оптимальности
  • Элементы лагранжевой теории двойственности
  • Линейное программирование. Численные методы
  • Выпуклое программирование. Численные методы
  • Нелинейное программирование. Численные методы
  • Целочисленное линейное программирование. Численные методы


Лабораторный практикум заключается в приобретении навыков моделирования сложных технико – экономических проблем в виде экстремальных задач в среде современных пакетов типа GAMS и разработке алгоритмов решения средствами этих пакетов.
^

Аннотация учебной программы дисциплины


«Теория принятия решений»

    Основной целью курса является ознакомление с базовыми математическими моделями и освоение алгоритмов решения дискретных экстремальных задач, а также знакомство с современными направлениями развития теории принятия решений. В целом материал курса ориентирован на умение правильно сформулировать оптимизационную задачу, классифицировать её, определить вычислительную сложность задачи и выбрать или разработать наиболее подходящий метод решения, реализовать его в виде алгоритма и программы.

Для достижения поставленной цели выделяются задачи курса:

Дать студентам представление о классах задачах, которыми занимается теория принятия решений (исследование операций), способах моделирования дискретных задач, точных и приближенных методах решения, оценки качества и вычислительной сложности алгоритмов. Помочь студентам в математическом моделировании задач смешанного целочисленного программирования, задач размещения, календарного планирования, упаковки, задач о рюкзаке, в изучении эвристических алгоритмов: имитации отжига, локальном поиске, алгоритме муравьиных колоний, генетическом алгоритме, в изучении точных методов: ветвей и границ, динамического программирования.

Дисциплина входит в вариативную часть общенаучного цикла М1 образовательной магистерской программы «Компьютерное моделирование» направления подготовки магистров 230100 «ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА»

Научить строить математические модели сложных производственно-экономических процессов, правильно классифицировать конкретную прикладную задачу, выбирать наиболее подходящий метод решения и реализовывать его в виде алгоритмов, включая возможности современных пакетов типа GAMS.

Изучение данной дисциплины базируется на дисциплинах: «Математическая логика», «Дискретная математика», « Теория алгоритмов» и «Методы оптимизации».

Изучение дисциплины направлено на формирование следующих общекультурных и профессиональных компетенций:
  • ОК-1, ОК-2, ОК-4
  • ПК-1, ПК-5, ПК-6

В результате изучения дисциплины студент должен:

Знать

- элементы теории сложности для анализа NP-трудных задач;

- основы теории алгоритмов комбинаторной оптимизации и вычислительную сложность;

- базовые понятия и определения, математические модели классических задач исследования операций численные методы и подходы к их решению;

- современные подходы к решению актуальных задач в области теории принятия решений;

Уметь

- правильно формулировать прикладную задачу в виде математической модели;

- выбирать подходящий метод решения и реализовывать его в виде алгоритмов и программ;

- профессионально работать с готовыми коммерческими программными продуктами для решения дискретных оптимизационных задач (GAMS, CPLEX и др.);

Владеть

- общими численными методами решения задач дискретной оптимизации;

- теорией алгоритмов решения задач размещения, составления расписаний, календарного планирования, теорией игр, раскроя и упаковки, маршрутизации

^ Основные разделы курса:
  • Предмет и метод теории принятия решений. Математические модели. Экстремальные задачи. Системы поддержки принятия решений. Классификация задач математического программирования.
  • Метод динамического программирования.
  • Задачи о рюкзаке. Задачи раскроя и упаковки. Модели календарного планирования. Задачи маршрутизации. Задачи о покрытии. Игровые задачи размещения. Задачи двухуровневого программирования и равновесия Штаккельберга.
  • Приближенные алгоритмы с оценками. Аппроксимационные схемы. Эвристики: алгоритмы локального, алгоритм локального поиска с чередующимися окрестностями, генетический алгоритм, алгоритм имитации отжига, алгоритм муравьиных колоний.
  • Классификация задач теории расписаний. Задачи на одной машине. Алгоритм Лаулера. Перестановочный прием. Задачи на параллельных машинах.
  • Теория матричных игр. Чистые и смешанные стратегии. Теорема Фон-Неймана. Дилемма о заключенных.
  • Вычислительная сложность задач. Основные классы вычислительной сложности.
  • Теория матроидов. Пересечение матроидов.

Семинарские занятия включают практикум по приобретению навыков моделирования сложных производственно-экономических проблем в виде оптимизационных задач в среде современных пакетов типа GAMS и разработке алгоритмов решения средствами этих пакетов.