Устаревшая ед частотного интервала. Названа в честь франц физика Ф. Савара (F. Savart). 1 С
Вид материала | Документы |
- Синдром удлинённого интервала qt и проблемы безопасности психофармакотерапии, 109.2kb.
- Товариство з обмеженою, 119.57kb.
- Н. Г. Чернышевского кафедра теоретической и математической физики рабочая программа, 152.3kb.
- Программа по физике для 10-11 классов общеобразовательных, 75.87kb.
- Татьяна Евгеньевна Зыкова. Сюных лет ему была интересна литература, 95.59kb.
- Электронная газета в рамках «Дня науки», посвященного Году российской космонавтики, 85.16kb.
- Лекция Логические основы компьютеров , 369.25kb.
- Игра ) Имя известного ученого, в честь которого названа самая популярная программа, 21.91kb.
- Физика биологических систем, 39.45kb.
- Динамика культурных процессов в современной России, 39.45kb.
^ В эмиссионном АСА для получения спектров испускания исследуемого в-ва отбирают представит. пробу, отражающую его состав, и вводят её в источник излучения (атомизатор). Здесь тв. и жидкие пробы испаряются, соединение диссоциирует и свободные атомы (ионы) переходят в возбуждённое состояние. Испускаемое ими излучение раскладывается в спектр и регистрируется (или наблюдается визуально) с помощью спектрального прибора.
Для возбуждения спектра в АСА используют разл. источники света и соответственно разл. способы введения в них образцов. Выбор источника зависит от конкретных условий анализа объекта. Тип источника и способ введения в него пробы составляют гл. содержание частных методик АСА. Первым искусств. источником света в АСА было пламя газовой горелки —
источник. весьма удобный для быстрого и точного определения мн. элементов. Темп-ра пламён горючих газов невысока (от 2100К для смеси водород — воздух до 4500К для смеси кислород — циан). С помощью фотометрии пламенной определяют ок. 70 элементов по их аналитич. линиям, а также по мол. полосам соединений, образующихся в пламёнах.
В эмиссионном АСА широко используются электрич. источники света. В электрич. дуге пост. тока между специально очищенными угольными электродами разл. формы, в каналы к-рых помещают исследуемое в-во в измельчённом состоянии, можно производить одновременно определение десятков элементов. Она обеспечивает относительно высокую темп-ру нагрева электродов и благоприятные условия возбуждения атомов пробы в дуговой плазме, однако точность этого метода невысока из-за нестабильности разряда. Повышая напряжение до 300—400 В или переходя к высоковольтной дуге (3—4 кВ), можно увеличить точность анализа.
Более стабильные условия создаёт дуга перем. тока. В совр. генераторах дуги перем. тока можно получать разл. режимы возбуждения (низковольтную дугу, искру, ВЧ искру, дугу перем. тока, импульсный разряд и т. д.). Такие источники света с разл. режимами используют при определении металлов и трудно возбудимых элементов (углерод, галогены, газы, содержащиеся в металлах, и т. д.). Высоковольтная конденсиров. искра служит гл. обр. источником света при анализе металлов. Стабильность искрового разряда позволяет получать высокую воспроизводимость анализа, однако сложные процессы, происходящие на поверхностях электродов, приводят к изменению состава плазмы разряда. Чтобы устранить это явление, производят предварит. обжиг проб, нормируют форму и размеры проб и стандартных образцов.
В эмиссионном АСА перспективно применение стабилизиров. форм электрич. разряда, получаемых в плазмотронах разл. конструкций, ВЧ индукционного разряда, СВЧ разряда, создаваемого магнетронными генераторами, ВЧ факельного разряда. С помощью разл. приемов введения анализируемых в-в в плазму этих разрядов (продувка порошков, распыление р-ров и т. д.) значительно повышена относит. точность анализа (до 0,5—3%), в т. ч. и компонентов сложных проб, содержание к-рых составляет десятки %. В нек-рых важных случаях анализа чистых в-в применение этих типов разряда снижает пределы определения примесей на 1—2 порядка (до 10-5—10-6 %).
Для апализа чистых в-в, радиоактивных материалов, смесей газов, изотопного анализа, спектрально-изотопного определения газов в метал-
708
лах и тв. телах и т. д. весьма перспективно оказалось использование разряда в полом катоде и безэлектродных ВЧ и СВЧ разрядов. В качестве источников возбуждения применяются также лазеры (см. Лазерная спектроскопия).
Атомно-абсорбционный С. а. (ААА) и атомно-флуоресцентный С. а. (АФА). В этих методах пробу также испаряют в атомизаторе (в пламени, графитовой трубке, плазме стабилизированного ВЧ и СВЧ разряда). В ААА свет от источника дискр. излучения, проходя через пар в-ва, ослабляется, и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. ААА проводят на спец. спектрофотометрах; методика его проведения по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах.
В АФА ат. пары пробы облучают резонансным для исследуемого элемента излучением и регистрируют его флуоресценцию. Для нек-рых элементов (Zn, Cd, Hg и др.) относит, пределы обнаружения весьма малы (~10-5—10-6 %).
АСА позволяет проводить измерение изотопного состава благодаря изотопному сдвигу спектр. линий (для большинства элементов требуются приборы высокой разрешающей способности, напр. эталон Фабри — Перо). Изотопный С. а. можно также проводить по электронно-колебательным спектрам молекул, определяя изотопные сдвиги полос, достигающие в некоторых случаях значительной величины.
Экспрессные методы АСА широко применяются в пром-сти, с. х-ве, геологии и мн. др. областях нар. х-ва и науки. Значит. роль АСА играет в ат. технике, произ-ве чистых ПП материалов, сверхпроводников и т. д.
К С. а. относится также анализ элементного состава в-ва по рентг. спектрам (см. ^ Спектральный анализ рентгеновский), по спектрам оже- и фотоэлектронов (см. Оже-спектроскопия и Фотоэлектронная спектроскопия), по спектрам фотопроводимости и др.
•Зайдель А. Н., Основы спектрального анализа, М., 1965; Русанов А. К., Основы количественного спектрального анализа руд и минералов, 2 изд., М., 1978; Спектральный анализ чистых веществ, под ред. X. И. Зильберштейна, Л., 1971; Львов Б. В., Атомно-абсорбционный спектральный анализ, М., 1966; Петров А. А., Спектрально-изотопный метод исследования материалов, Л., 1974; Тарасевич Н. И., Семененко К. А., Хлыстова А. Д., Методы спектрального и химико-спектрального анализа, М., 1973; Менке Г., Менке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., М., 1968; Королев Н. В., Р ю х и н В. В., Г о р б у н о в С. А., Эмиссионный спектральный микроанализ, Л., 1971; Таблицы спектральных линий, 4 изд., М., 1977.
^ Л. В. Липис.
Молекулярный спектральный анализ (МСА)
В основе МСА лежит качеств. и количеств. сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качеств. и количеств. МСА. В МСА используют разл. виды молекулярных спектров: вращательные (микроволновая и длинноволновая ИК области спектра), колебательные и колебательно-вращательные [спектры поглощения и излучения в ср. ИК области, спектры комбинационного рассеяния света (КРС), спектры ИК флуоресценции], электронные, электронно-колебательные и электронно-колебательно-вращательные (спектры поглощения и пропускания в видимой и УФ областях, спектры флуоресценции). МСА позволяет проводить анализ малых количеств в-ва (до долей мкг и менее) в разл. агрегатных состояниях.
Осн. факторы, определяющие возможности методов МСА: 1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определ. интервале длин волн или частот исследуемого диапазона (для микроволн. диапазона оно ~105, для ср. ИК области ~103);
2) кол-во измеренных спектров индивидуальных соединении;
3) существование общих закономерностей между спектром в-ва и его мол. строением;
4) чувствительность и избирательность метода;
5) универсальность метода;
6) простота и доступность измерений спектров.
^ Качественный МСА устанавливает мол. состав исследуемого образца. Спектр молекулы явл. его однозначной хар-кой. Наиболее специфичны спектры в-в в газообразном состоянии с разрешённой вращат. структурой, к-рые исследуют с помощью спектр. приборов высокой разрешающей способности. Чаще всего используют спектры ИК поглощения и КРС в-в в жидком и тв. состояниях, а также спектры поглощения в видимой и УФ областях. Широкому внедрению метода КРС способствовало применение для их возбуждения лазерного излучения.
Для повышения эффективности МСА в нек-рых случаях измерение спектров комбинируют с др. методами идентификации в-в. Так, всё большее распространение получает сочетание хроматографич. разделения в-в смесей с измерением ИК спектров поглощения выделенных компонентов.
К качеств. МСА относится также т. н. структурный мол. анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания (особенно колебательных) общие черты. Так, наличие
сульфгидрильной группы (—SH) в структуре молекулы влечёт за собой появление в спектре полосы в интервале 2565—2575 см-1 нитрильной группы (—CN) — полосы 2200— 2300 см-1 и т. д. Присутствие этих характеристич. полос в колебат. спектрах в-в с общими структурными элементами объясняется характеристичностью частоты (см. Характеристические частоты) и формы мн. мол. колебаний. Эта особенность колебательных (и в меньшей степени электронных) спектров позволяет определять структурный тип в-ва.
Применение ЭВМ существенно упрощает и ускоряет качеств. анализ. В принципе его можно полностью автоматизировать, вводя показания спектр. приборов непосредственно в ЭВМ, в память к-рой заложены спектральные характеристич. признаки мн. в-в.
^ Количественный МСА по спектрам поглощения основан на Бугера — Ламберта — Бера законе, устанавливающем связь между интенсивностями падающего I0 и прошедшего через в-во I света в зависимости от толщины поглощающего слоя l и концентрации в-ва с:
I(l)=I0e-cl.
Коэфф, явл. хар-кой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие успешного проведения количеств. МСА — независимость от с и постоянство в измеряемом интервале частот, определяемом шириной щели спектрофотометра. МСА по спектрам поглощения проводят преим. для жидкостей и р-ров, для газов он значительно усложняется.
В практич. МСА обычно измеряют т. н. оптич. плотность D:
D = lnI0/I=cl.
Если смесь состоит из n в-в, не реагирующих друг с другом, то оптич. плотность смеси на частоте v аддитивна: D=ni=1Div. Это позволяет проводить полный или частичный анализ многокомпонентных смесей. Задача в этом случае сводится к измерению значений оптич. плотности в m точках спектра смеси (mn) и решения получаемой системы ур-ний:
Dk=ni=1Dki.
Для количеств. МСА обычно пользуются спектрофотометрами, позволяющими производить измерения I(v) в сравнительно широком интервале v. Если полоса поглощения исследуемого в-ва достаточно изолирована и свободна от наложения полос др. компонентов смеси, исследуемый спектр. участок можно выделить, напр., при помощи интерференц. светофильтра. На его основе конструируют спец. анализаторы, используемые в промышленности.
709
При количеств. MCA по спектрам КРС чаще всего интенсивность линий определяемого компонента смеси сравнивают с интенсивностью нек-рой линии стандартного в-ва, измеренной в тех же условиях (метод внеш. стандарта). В др. случаях стандартное в-во добавляют к исследуемому в определ. кол-ве (метод внутр. стандарта).
Среди др. методов качеств. и количеств. МСА наибольшей чувствительностью обладает флуоресцентный анализ, однако он уступает методам колебат. спектроскопии в универсальности и избирательности. Количеств. МСА по спектрам флуоресценции основан на сравнении свечения р-ра исследуемого образца со свечением ряда эталонных р-ров близкой концентрации.
Особое значение имеет флуоресцентный анализ с применением техники замороженных р-ров в спец. растворителях, напр. в парафинах (Шпольского эффект). Благодаря исключительно малой ширине спектр. линий в этом случае удаётся достичь высокой пороговой чувствительности обнаружения нек-рых многоатомных ароматич. соединений (~ 10-11 г/см3).
•Чулановский В. М., Введение в молекулярный спектральный анализ, 2 изд., М.— Л., 1951; Беллами Л., Инфракрасные спектры сложных молекул, 2 изд., М., 1963; Применение спектроскопии в химии, под ред. В. Веста, пер. с англ., М., 1959; Определение индивидуального углеводородного состава бензинов прямой гонки комбинированным методом, М., 1959; Юденфред С., Флуоресцентный анализ в биологии и медицине, пер. с англ., М., 1965.
В. Т. Алексанян.
^ СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ, элементный анализ в-ва по его рентгеновским спектрам. Качеств. С. а. р. выполняют по спектр. положению характеристич. линий в спектре испускания исследуемого образца, его основа — Мозли закон; количеств. С. а. р. осуществляют по интенсивностям этих линий. Методами С. а. р. могут быть определены все элементы с ат. номером Z11 (в нек-рых случаях — и более лёгкие). Порог чувствительности С. а. р. в большинстве случаев ~10-2—10-4 %, продолжительность — неск. минут (вместе с подготовкой пробы). С. а. р. не разрушает пробу.
Наиболее распространённый вид С. а. р.— анализ валового состава материалов по их флуоресцентному рентг. излучению — выполняется по относит. интенсивности линий, к-рая измеряется с высокой точностью спектральной аппаратурой рентгеновской. Относит. точность количеств. С. а. р. колеблется от 0,3 до 10% в зависимости от состава пробы. На интенсивность аналитич. линии каждого элемента влияют все остальные элементы пробы, поэтому одной и той же измеренной интенсивности Ii аналитич. линии i могут соответствовать
разл. концентрации C1 С2, С3, . . . определяемого элемента (рис.) в зависимости от наполнителя — состава пробы за исключением определяемого элемента. Вследствие этого т. н. вырождения интенсивности по концентрации С. а. р. возможен лишь на основе общей теории зависимости Ii от концентраций всех n компонентов пробы — системы n ур-ний связи.
^ Графики зависимости Ii аналитич. линии i от концентрации С элемента в пробе (аналитич. график) для случаев, когда поглощение наполнителя меньше (1), равно (2) или больше (3) поглощения определяемого элемента. Iф — интенсивность фона.
На основе общей теории анализа разработано неск. частных методов. При отсутствии в пробе мешающих элементов применяют метод внеш. стандарта: измеряют интенсивность аналитич. линии и по аналитич. графику образца известного состава (стандарта) находят концентрацию исследуемого элемента в пробе. Для многокомпонентных проб применяют метод внутр. стандарта, в к-ром ординатой аналитич. графика служит отношение интенсивностей определяемого элемента и внутр. стандарта — добавленного в пробу в определ. концентрации элемента, соседнего в периодич. системе элементов с определяемым. Иногда применяют метод добавок в пробу определяемого элемента или наполнителя в известном кол-ве. По изменению интенсивности аналитич. линии можно определить первоначальную концентрацию элемента. В методе стандарта-фона ординатой аналитич. графика явл. отношение интенсивностей аналитич. линии и близкой к ней линии первичного рентг. излучения, рассеянного пробой. Это отношение во мн. случаях мало зависит от состава наполнителя. Для анализа сложных многокомпонентных проб полную систему ур-ний связи расшифровывают на ЭВМ методом последоват. приближений.
С. а. р. валового состава применяется на обогатит. фабриках цветной металлургии, для определения потерь металла в шлаках, маркировки сплавов, силикатного анализа и т. д.
^ Рентгеновский микроанализ (локальный анализ) участков пробы ~1 —3 мкм2 выполняют с помощью электронно-зондового микроанализатора по рентг. спектру исследуемого участка. Он требует точного введения поправок на Z определяемого элемента,
поглощение его излучения в пробе и его флуоресценцию, возбуждаемую тормозной компонентой излучения и характеристич. излучением др. элементов пробы.
Микроанализ применяют при исследовании взаимной диффузии 2- и 3-компонентных систем, процессов кристаллизации, локальных флуктуации состава сплавов и пр.
• Б л о х и н М. А., Методы рентгено-спектральных исследований, М., 1959; Плотников Р. И., Пшеничный Г. А., Флюоресцентный рентгенорадиометрический анализ, М., 1973; Физические основы рентгеноспектрального локального анализа, пер. с англ., М., 1973; Электронно-зондовый микроанализ, пер. с англ., М., 1974; Рентгенотехника. Справочник, кн. 2, М., 1980; Афонин В. П., Гуничева Т. Н., Рентгеноспектральный флуоресцентный анализ горных пород и минералов, Новосиб., 1977.
^ М. А. Блохин.
СПЕКТРОГРАФ (от спектр и греч. grapho — пишу), спектральный прибор, в к-ром приёмник излучения регистрирует практически одновременно весь оптич. спектр, развёрнутый в фокальной плоскости оптич. системы. В качестве приёмника излучения в С. служат фотоматериалы, многоэлементные фотоприёмники или электроннооптич. преобразователи. Если регистрирующее устройство приспособлено для исследования быстро меняющихся по времени спектров, то, в зависимости от конструкции, С. наз. киноспектрографом, спектрохронографом, хроноспектрографом. См. также Спектральные приборы.
СПЕКТРОМЕТР (от спектр и греч. metreo — измеряю), в широком смысле — устройство для измерения ф-ции распределения нек-рой физ. величины f по параметру х. Ф-цию распределения эл-нов по скоростям измеряет бета-спектрометр, атомов по массам — масс-спектрометр, гамма-квантов по энергиям — гамма-спектрометр, энергию световых потоков по длинам волн излучения — оптич. спектрометр и т. д. В узком смысле С. наз. спектральные приборы для измерений оптич. спектров f(x) с помощью фотоэлектрич. приёмников излучения.
^ СПЕКТРОМЕТР ПО ВРЕМЕНИ ПРОЛЁТА, прибор для измерения скорости v ч-ц по времени пролёта ими заданного расстояния. Измеряется временной интервал между импульсами от двух детекторов частиц (сцинтилляционных, искровых или черенковских счётчиков), ограничивающих т. н. пролётную базу. Для ч-цы с известным импульсом p=mv/(1-v2/c2) (m — масса ч-цы), к-рый может быть измерен, напр., магнитным спектрометром, измерение v позволяет определить т, т. е. идентифицировать ч-цу. Если же масса ч-цы известна (напр., протон отдачи), С. по в. п. позволяет измерить её импульс. Разрешающая способность по массе m/m при заданном разрешении по скорости резко ухудшается с ростом энергии ξ ч-ц: m/m=2(/), =v/c,= ξ/m=(l-2)1/2
710
При временном разрешении ~10-10с и пролётной базе l~102—103 м можно измерять скорость ч-ц с точностью /=10-3—10-4. Хотя газовые черенковские счётчики дают большую точность (/=10-6), С. по в. п. применять удобнее, если скорости ч-ц лежат в широком диапазоне. Это важно при поисках новых ч-ц. С. по в. п. сыграли важную роль в экспериментах на серпуховском ускорителе, где были обнаружены ядра антигелия и антитрития.
С. по в. п. в сочетании с ускорителями и яд. импульсными реакторами может быть использован для измерения не только заряженных, но и нейтр. ч-ц (нейтронов, К°-мезонов и др.). В этом случав начало отсчёта времени задаётся импульсным источником Ч-ц (см. Нейтронная спектроскопия).
• Методы измерения основных величин ядерной физики, ред.-сост. Люк К. Л. Юан и By Цзянь-Сюн, пер. с англ., М., 1964; Быстродействующая электроника для регистрации ядерных частиц, М., 1970. Л. Г. Ландсберг.
СПЕКТРОМЕТРИЯ, область физики и техники, разрабатывающая теорию и методы измерении спектров. В оптич. диапазоне длин волн С. объединяет разделы прикладной спектроскопии, метрологии и теории линейных систем. С. служит для обоснования выбора принципиальных схем спектр. приборов и оптимизации методов расчёта. Подробнее см. в ст. Спектральные приборы.
СПЕКТРОСКОПИЯ, раздел физики, посвящённый изучению спектров эл.-магн. излучения. Методами С. исследуют уровни энергии атомов, молекул и образованных из них макроскопич. систем, а также квант. переходы между уровнями энергии, что даёт важную информацию о строении и св-вах в-ва. Важнейшие области применения С.— спектральный анализ и астрофизика.
Осн. этапы развития С.— открытие и исследование в нач. 19 в. линий поглощения в солн. спектре (фраунгоферовых линий), установление связи спектров испускания и поглощения (Г. Р. Кирхгоф, 1859) и возникновения на её основе спектр. анализа. С его помощью впервые удалось определить состав астр. объектов — Солнца, звёзд, туманностей. Во 2-й пол. 19 — нач. 20 вв. С. продолжала развиваться как эмпирич. наука, был накоплен огромный эксперим. материал, установлены закономерности в расположении спектральных линий и полос. В 1913 Н. Бор объяснил эти закономерности на основе квант. теории, согласно к-рой спектры эл.-магн. излучения возникают при квант. переходах между уровнями энергии ат. систем в соответствии с Бора постулатами. В дальнейшем С. сыграла большую роль в создании квантовой механики и квантовой электродинамики, к-рые, в свою очередь, стали теор. базой совр. С.
С. делится на области по разл. признакам. По диапазонам длин (или частот) эл.-магн. волн в С. выделяют: радиоспектроскопию, охватывающую область радиоволн; субмиллиметровую спектроскопию; микроволновую спектроскопию; оптич. С., изучающую спектры оптические и содержащую инфракрасную спектроскопию, С. видимого излучения и ультрафиолетовую спектроскопию; рентгеновскую спектроскопию и гамма-спектроскопию. Специфика каждой из этих областей С. основана на особенностях эл.-магн. волн соответствующего диапазона и методах получения и исследования спектров: в радиоспектроскопии применяются радиотехн. методы, в рентгеновской — рентг. методы получения и исследования спектров, в гамма-спектроскопии — эксперим. методы яд. физики, в оптич. С.— оптич. методы в сочетании с методами совр. радиоэлектроники. Часто под термином «С.» понимают лишь оптич. С.
В соответствии с различием конкретных эксперим. методов выделяют спец. разделы С.— интерференционную, основанную на применении интерферометров (см., напр., Фурье спектроскопия), вакуумную спектроскопию, лазерную спектроскопию. Одним из разделов ультрафиолетовой С. и рентг. С. явл. фотоэлектронная спектроскопия.
По типам исследуемых объектов С. разделяют на атомную, изучающую атомные спектры, молекулярную, исследующую молекулярные спектры, и С. в-ва в конденсиров. состоянии (в частности, спектроскопию кристаллов). В соответствии с видами движения в молекуле (электронное, колебательное, вращательное) мол. С. делят на электронную, колебательную и вращательную. Аналогично различают электронную и колебательную С. кристаллов. В С. атомов, молекул и кристаллов применяют методы оптической, рентгеновской и радиоспектроскопии.
Особую область исследований представляет яд. спектроскопия, в к-рую включают гамма-, альфа- и бета-спектроскопии; из них только гамма-спектроскопия относится к С. эл.-магн. излучения.
• См. лит. при ст. Радиоспектроскопия, Инфракрасная спектроскопия, Комбинационное рассеяние света, Атомные спектры, Молекулярные спектры, Ультрафиолетовое излучение, Спектроскопия кристаллов, Рентгеновская спектроскопия.
^ М. А. Ельяшевич.