[по имени амер физика И. А. Раби (I. I. Rabi)], резонансный метод исследования магн моментов ядер, атомов и молекул и внутримол
Вид материала | Документы |
- 32. Эволюция понятия элементарная частица. Неизменность свойств ядер, атомов, молекул, 827.07kb.
- Молекулярная физика и термодинамика статистический и термодинамический методы Молекулярная, 12.67kb.
- Элементы квантовой механики и физики атомов, молекул, твердых тел, 156.85kb.
- X международная конференция Импульсные лазеры на переходах атомов и молекул ampl, 299.2kb.
- Магнитные свойства молекул, 29.04kb.
- Моделирование структур молекул по Огжевальскому, 61.04kb.
- Десятая новая лекция аксиомы единства канарёв, 209.76kb.
- Программа-минимум кандидатского экзамена по специальности, 79.71kb.
- Молекулярная физика и термодинамика. Лекция №1 Молекулярно-кинетическая теория Основные, 10053.18kb.
- Вегето- резонансный тест Оценка по методу Кузьменко (метод Накатани) Диабат (метод, 12.28kb.
^ Низкочастотные волны в ионосфере.
Осн. часть энергии низкочастотных (НЧ) и очень низкочастотных (ОНЧ) радиоволн практически не проникает в ионосферу. Волны отражаются от её нижней границы (днём — вследствие сильной рефракции в D-слое, ночью — от Е-слоя, как от границы двух сред с разными электрич. свойствами). Распространение этих волн хорошо описывается моделью, согласно к-рой однородные и изотропные Земля и ионосфера образуют приземный волновод с резкими сферич. стенками, в к-ром и происходит Р. р. Такая модель объясняет наблюдаемое убывание поля с расстоянием и возрастание амплитуды поля с высотой. Последнее связано со скольжением волн вдоль вогнутой поверхности волновода, приводящим к своеобразной «фокусировке» поля. Это явление аналогично открытому Рэлеем в акустике эффекту «шепчущей галереи». Амплитуда радиоволн значительно возрастает в антиподной по отношению к источнику точке Земли. Это объясняется сложением радиоволн, огибающих Землю по всем направлениям и сходящихся на противоположной стороне.
619
Влияние магн. поля Земли обусловливает ряд особенностей распространения НЧ волн в ионосфере: сверхдлинные волны могут выходить из приземного волновода за пределы ионосферы, распространяясь вдоль силовых линий геомагн. поля между сопряжёнными точками А и В Земли (рис. 13). Из формулы (5) видно,
что при <<H в случае продольного распространения n2e20/H нигде не обращается в 0, т. е. волна проходит через ионосферу без отражения. В ночной атмосфере прибл. геом. оптики нарушается и частичное прохождение есть при любом угле падения. Разряды молний в атмосфере — естеств. источник НЧ волн. В диапазоне 1—10 кГц они приводят к образованию т. н. свистящих атмосфериков, к-рые распространяются указанным образом и создают на выходе приёмника сигнал с характерным свистом.
При Р. р. инфразвуковых частот с <<H важную роль играют колебания ионов, и ионосфера ведёт себя, как проводящая нейтральная жидкость, движение к-рой описывается ур-ниями магнитной гидродинамики. В ионосфере возможно распространение неск. типов магнитогидродинамич. волн, в частности альфвеновских волн, распространяющихся вдоль геомагн. поля с характерной скоростью vA=H0/p4, где — плотность газа, и магнитозвуковых волн, к-рые распространяются изотропно (подобно звуку).
Нелинейные эффекты при Р. р. в ионосфере проявляются уже для радиоволн сравнительно небольшой интенсивности и связаны с нарушением линейной зависимости поляризации среды от электрич. поля волны (см. Нелинейная оптика). «Нагревная» нелинейность играет осн. роль, когда характерные размеры возмущённой электрич. полем области плазмы во много раз больше длины свободного пробега эл-нов. Т. к. длина свободного пробега эл-нов в плазме значительна, эл-н успевает получить от поля заметную энергию за время одного пробега. Передача энергии при столкновениях от эл-на к ионам, атомам и молекулам затруднена из-за большого различия в их массах. В результате эл-ны плазмы сильно «разогреваются» уже в сравнительно слабом электрич. поле, что изменяет эффективную частоту соударений. По-
этому и плазмы становятся зависящими от поля Е волны, и Р. р. приобретает нелинейный характер. «Возмущение» диэлектрич. проницаемости: ~(Е/Еp)2, где Ер=(3(Тт/е2)(2+v2)) — характерное «плазменное» поле, Т — абс. темп-ра плазмы, б — ср. доля энергии, теряемая эл-ном при одном соударении с тяжёлой ч-цей, v — частота соударений. Т. о., нелинейные эффекты становятся заметными, когда поле волны Е сравнимо с Ер, к-рое в зависимости от частоты волны и области ионосферы составляет ~10-4—10-1 В/см.
Нелинейные эффекты могут проявляться как самовоздействие волны и как вз-ствие волн между собой. Самовоздействие мощной волны приводит к изменению её поглощения и глубины модуляции. Поглощение мощной радиоволны нелинейно зависит от её амплитуды. Частота соударений v с увеличением темп-ры эл-нов может как расти (в нижних слоях, где осн. роль играют соударения с нейтральными ч-цами), так и убывать (при соударении с ионами). В первом случае поглощение резко возрастает с увеличением мощности волны («насыщение» поля в плазме). Во втором случае поглощение падает (т. н. п р о с в е т л е н и е плазмы для мощной радиоволны). Из-за нелинейного изменения поглощения амплитуда волны нелинейно зависит от амплитуды падающего поля, поэтому её модуляция искажается (автомодуляция и демодуляция волны). Изменение n в поле мощной волны приводит к искажению траектории луча. При распространении узконаправленных пучков радиоволн это может привести к самофокусировке пучка аналогично самофокусировке света и к образованию волноводного канала в плазме.
^ Рис. 14. Ионосферная кроссмодуляция происходит в области пересечения лучей.
Вз-ствие волн в условиях нелинейности приводит к нарушению суперпозиции принципа. В частности, если мощная волна с частотой 1 модулирована по амплитуде, то благодаря изменению поглощения эта модуляция может передаться др. волне с частотой 2, проходящей в той же области ионосферы (рис. 14). Это явление, наз. к р о с с м о д у л я ц и е й, или Л ю к с е м б у р г - г о р ь к о в с к и м э ф ф е к т о м, имеет практич. значение при радиовещании в диапазоне средних волн.
Нагрев ионосферы в поле мощной волны в коротковолновом диапазоне может вызвать тепловую параметрич. неустойчивость в ионосфере, к-рая
приводит к аномально большому поглощению радиоизлучения и расслоению плазмы (см. ^ Параметрический резонанс). В области резонанса =(20+2H) образуются сильно вытянутые вдоль Н0 неоднородности ионосферы (с продольным масштабом 1 км, поперечным — 0,5—100 м), к-рые перспективны для дальней связи в диапазоне УКВ. В поле очень мощных радиоволн эл-ны столь сильно разогреваются, что возникает электрич. пробой газа.
Если размеры возмущённой полем волны области плазмы много меньше длины свободного пробега эл-нов, н а г р е в н а я н е л и н е й н о с т ь становится слабой. Это имеет место при коротких импульсах и узких пучках радиоволн. В этом случае осн. роль играет т. н. с т р и к ц и о н н а я н е л и н е й н о с т ь, связанная с тем, что неоднородное переменное электрич. поле волны оказывает давление на эл-ны, вызывающее сжатие плазмы. Концентрация эл-нов N, а следовательно, и становятся зависящими от амплитуды поля. Стрикционная нелинейность приводит к изменению диэлектрич. проницаемости сe2E2/8Tm2, меньше нагревного изменения H на неск. порядков (при той же мощности волны). Стрикционная нелинейность играет важную роль в параметрич. неустойчивости ионосферы.
^ Р. р. в косм. условиях. За исключением планет и их ближайших окрестностей большая часть в-ва во Вселенной ионизована. Параметры косм. плазмы меняются в широких пределах. Напр., концентрация электронов и ионов вблизи орбиты Земли ~1 —10 см-3, в ионосфере Юпитера ~105 см-3, в солнечной короне ~108 см-3,а в недрах звёзд ~1027 см-3. Из косм. пространства к Земле приходит широкий спектр эл.-магн. волн, к-рые на пути из - космоса должны пройти через ионосферу и тропосферу. Через атмосферу Земли без заметного затухания распространяются волны двух осн. частотных диапазонов: «радиоокно» соответствует диапазону от ионосферных критич. частот кр до частот сильного поглощения аэрозолями и газами атмосферы (10 МГц — 20 ГГц), «оптич. окно» охватывает диапазон видимого и ИК излучения (1 ТГц — 103 ГГц). Атмосфера также частично прозрачна в диапазоне низких частот (<300 кГц), где распространяются свистящие атмосферики и магнитогмдродинамич. волны.
В косм. условиях источник радиоволн и их приёмник часто быстро движутся относительно друг друга. В результате ^ Доплера эффекта это приводит к изменению на = (kv), где v — относит. скорость. Понижение частоты при удалении корреспондентов (красное смещение) свойственно излучению удаляющихся от
620
нас далёких галактик. Радиоволны в косм. плазме подвержены рефракции, связанной с неоднородностью среды (рис. 15). Напр., вследствие рефракции в атмосфере Земли источник радиоволн виден выше над горизонтом, чем в действительности. Для определения расстояния до пульсаров и при интерпретации результатов радиолокации Солнца и планет необходимо учитывать, что в косм. плазме vфс.
Рис. 15. Траектории радиолучей с =5 м в солнечной короне.
Возможности радиосвязи с объектами, находящимися в косм. пространстве или на др. планетах, разнообразны и связаны с наличием и строением их атмосфер. Если косм. плазма находится в магн. поле (магнитосфера Юпитера, области солнечных пятен, магнитосферы пульсаров), то она явл. гиротропной средой, подобно Земной ионосфере. Для всех планет с атмосферами общая трудность радиосвязи состоит в том, что при входе косм. аппарата в плотные слои атмосферы вокруг него создаётся плотная плазменная оболочка, затрудняющая прохождение радиоволн. На планетах типа Меркурия и Луны, практически не имеющих атмосферы и ионосферы, на Р. р. оказывает влияние только поверхность планеты. Из-за отсутствия отражения от ионосферы дальность связи вдоль поверхности такой планеты невелика (рис. 16) и может быть увеличена только при помощи ретрансляции через спутник.
Рис. 16. Зависимость дальности r радиосвязи на поверхности Луны от частоты /2.
Распространение радиоволн разных диапазонов. Радиоволны очень низких (3-30 кГц) и. низких (30—300 кГц) частот огибают земную поверхность вследствие волноводного распространения и дифракции, сравнительно слабо проникают в ионосферу и мало поглощаются ею. Отличаются высокой фазовой стабильностью и способностью равномерно покрывать большие площади, включая полярные районы. Это обусловливает возможность их использования для устойчивой дальней и сверхдальней радиосвязи и радионавигации, несмотря на высокий уровень атм. помех. Полоса
частот от 150 кГц до 300 кГц используется для радиовещания. Большое число геофиз. исследований выполняется путём наблюдений за сигналами естеств. происхождения, к-рые генерируются, напр., молниевыми разрядами и ч-цами радиационных поясов Земли. Трудности применения этого частотного диапазона связаны с громоздкостью антенных систем с высоким уровнем атм. помех, с относит. ограниченностью скорости передачи информации.
С р е д н и е в о л н ы (300 кГц — 3000 кГц) днём распространяются вдоль поверхности Земли (земная или прямая волна). Отражённая от ионосферы волна практически отсутствует, т. к. волны сильно поглощаются в слое D ионосферы. Ночью из-за отсутствия солнечного излучения слой D исчезает, появляется ионосферная волна, отражённая от слоя Е и дальность приёма возрастает. Сложение прямой и отражённой волн влечёт за собой сильную изменчивость поля, поэтому ионосферная волна — источник помех для многих служб, использующих распространение земной волны. Ср. волны используются в радиовещании, радиотелеграфной и радиотелефонной связи, радионавигации.
Короткие волны (3 МГц — 30 МГц) слабо поглощаются D- и Е-слоями и отражаются от слоя F, когда их частоты <мпч. В результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значит. меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах. Этот диапазон применяется для радиотелефонной и радиотелеграфной связи, радиовещания, а также для радиолюбит. связи. Особенность радиосвязи в этом диапазоне — наличие замираний (ф е д и н г а) сигнала из-за изменений условий отражения от ионосферы и интерференц. эффектов. Коротковолновые линии связи подвержены влиянию атм. помех. Ионосферные бури вызывают прерывание связи.
Для очень высоких частот и УКВ (30—1000 МГц) преобладают Р. р. внутри тропосферы и проникновение сквозь ионосферу. Роль земной волны падает. Поля помех в низкочастотной части этого диапазона всё ещё могут определяться отражениями от ионосферы, и до частоты 60 МГц ионосферное рассеяние продолжает играть значит. роль. Все виды Р. р., за исключением тропосферного рассеяния, позволяют передавать сигналы с шириной полосы частот в неск. МГц. В этой части спектра возможно очень высокое качество звукового радиовещания при дальности 50—100 км. Радиовещание с частотной модуляцией работает на частотах вблизи 100 МГц. В этом же диапазоне частот ведётся телевизионное вещание. Для радио-
астрономии выделено неск. узких спектральных полос, к-рые используются также для косм. связи, радиолокации, метеорологии, кроме того для любительской связи.
Волны УВЧ и СВЧ (1000 МГц 10000 МГц) распространяются в основном в пределах прямой видимости и характеризуются низким уровнем шумов. В этом диапазоне при Р. р. играют роль известные области макс. поглощения и частоты излучения хим. элементов (напр., линии водорода вблизи от 1420 МГц). В этом диапазоне размещены многоканальные системы широкополосной связи для передачи телефонных и телевизионных сигналов. Высокая направленность антенн позволяет использовать низкий уровень мощности в радиорелейных системах, а тропосферное рассеяние обеспечивает дальность радиосвязи ~800 км. Этот диапазон используется в радионавигац. и радиолокац. службах. Для радиоастрономии выделены полосы частот для наблюдения за атомарным водородом, радикалом ОН и континуальным излучением. Для косм. радиосвязи полоса частот ~1000—10 000 МГц — наиболее важная часть радиодиапазона.
Волны СВЧ (>10 ГГц) распространяются только в пределах прямой видимости. Потери в этом диапазоне неск. выше, чем на более низких частотах, причём на их величину сильно влияет кол-во осадков. Рост потерь на этих частотах частично компенсируется возрастанием эффективности антенных систем. СВЧ используются в радиолокации, радионавигации и метеорологии. На линиях связи между поверхностью Земли и космосом могут использоваться частоты <20 ГГц. Для связи в космосе могут применяться значительно более высокие частоты. При этом отсутствуют взаимные помехи между косм. и некосм. службами. Диапазон СВЧ важен также для радиоастрономии.
• Г и н з б у р г В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Ф о к В. А., Проблемы диффракции и распространения электромагнитных волн, М., 1970; Б р е х о в с к и х Л. М., Волны в слоистых средах, 2 изд., М., 1973; Татарский В. И,, Распространение волн в турбулентной атмосфере, М., 1967; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Железняков В. В., Электромагнитные волны в космической плазме, М., 1977; Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972.
П. А. Беспалов, М. Б. Виноградова, Т. А. Гайлит.
^ РАССЕЯНИЕ ЗВУКА, возникновение дополнит. звуковых полей в результате дифракции звука на препятствиях, помещённых в среду, на неоднородностях среды, а также на неровных и неоднородных границах сред, Р. з. имеет место, если препятствия отличаются от среды либо сжимаемостью, либо плотностью, либо
621
тем и другим. При Р. з. результирующее звуковое поле можно представить в виде суммы первичной звуковой волны (существовавшей в отсутствии препятствий) и рассеянной (вторичной) волны, возникшей в результате вз-ствия первичной волны с препятствиями. При наличии многих препятствий волны, рассечённые каждым из них, рассеиваются повторно и многократно др. препятствиями.
Рассеивающую способность препятствия характеризуют сечением рассеяния — отношением мощности рассеянных волн к плотности потока энергии в первичной волне. Для препятствий, сравнимых с длиной волны или больших её, по порядку величины равно площади S поперечного сечения тела перпендикулярно направлению падения первичной волны. Для малых препятствий величина а мала по сравнению с S и отношение /S~(ka)4, где k — волновое число звука, а — линейный размер тела. Особый случай — Р. з. на газовом пузырьке в жидкости при его резонансных пульсационных колебаниях: в этом случае >>S.
Р. з. на случайных неоднородностях среды вызывает расплывание звукового пучка, что приводит к затуханию звука по мере его распространения. На высоких частотах Р. з. на кристаллитах в поликрист. телах позволяет обнаруживать области крупнозернистости, создающие мешающий фон (т. н. структурный шум) при УЗ дефектоскопии. В гидроакустике существенно Р. з. на неоднородностях водной среды, на рыбах, планктоне и др. биол. объектах в водной толще, а также на неровной поверхности волнующегося моря и на неровном и неоднородном дне (объёмная, поверхностная и донная реверберация). Морская реверберация может маскировать акустич. сигнал, отражающийся от обнаруживаемого объекта при гидролокации.
При падении плоской волны на плоскую периодически неровную или периодически неоднородную поверхность, помимо зеркально отражённой волны, образуются рассеянные плоские волны, бегущие в дискретных направлениях, определяемых углом падения первичной волны, её длиной К и периодом неровности или неоднородности А. Если </2, рассеянные волны отсутствуют и влияние неровностей или неоднородностей проявляется лишь в нек-ром возмущении суммарного поля падающей и зеркально отражённой волны вблизи поверхности, а также в нек-ром изменении фазы отражённой волны. Для статистически неровных или неоднородных поверхностей Р. з. происходит по всем направлениям.
• Исакович М. А., Общая акустика, ., 1973; Акустика океана, под ред. Л. М. Бреховских, М., 1974. М. А. Исакович.
^ РАССЕЯНИЕ МИКРОЧАСТИЦ, процесс столкновения ч-ц, в результате к-рого меняются импульсы ч-ц (у п р у г о е р а с с е я н и е) или наряду с изменением импульсов меняются также внутр. состояния ч-ц (к в а з и- у п р у г и е п р о ц е с с ы) либо образуются др. ч-цы (н е у п р у г и е п р о ц е с с ы).
Одна из осн. количеств. хар-к как упр. рассеяния, так и неупр. процессов, — эффективное сечение процесса — величина, пропорциональная вероятности процесса. Измерение сечений процессов позволяет изучать законы вз-ствия ч-ц, исследовать их структуру.
Классическая теория рассеяния. Согласно законам классич. нерелятив. механики, задачу рассеяния двух ч-ц с массами m1 и m2 можно свести путём перехода к системе центра инерции (с. ц. и.) сталкивающихся ч-ц к задаче рассеяния одной ч-цы с приведённой массой =m1m2/(m1+m2) на неподвижном силовом центре. Траектория ч-цы, проходящей через силовое поле (с центром О), искривляется — происходит рассеяние. Угол между нач. (pнач) и конечным (pкон) импульсами рассеиваемой ч-цы наз. у г л о м р а с с е я н и я. Угол рассеяния зависит от вз-ствия между ч-цами и от прицельного параметра — расстояния, на к-ром ч-ца пролетала бы от силового центра, если бы вз-ствие отсутствовало (рис. 1).
На опыте обычно направляют на Мишень из исследуемого в-ва пучок ч-ц. Число ч-ц dN, рассеянных в ед. времени на углы, лежащие в интервале , +d, равно числу ч-ц, проходящих в ед. времени через кольцо с площадью ,2d. Если n — плотность потока падающих ч-ц, то dN=2d•n, а сечение упр. рассеяния da определяется как отношение dNln и равно:
Полное сечение рассеяния 0 получается интегрированием (1) по всем прицельным параметрам. Если а — миним. прицельный параметр, при к-ром ч-ца не рассеивается, то =а2.
^ Квантовая теория рассеяния.
В квант. теории упр. рассеяние и неупр. процессы описываются матричными элементами S-матрицы, или матрицы рассеяния (амплитудами процессов),— комплексными величинами, квадраты модуля к-рых пропорц. сечениям соответств. процессов. Через матричные элементы S-матрицы выражаются физ. величины, непосредственно измеряемые на опыте: сечение, поляризация частиц, асимметрия, компоненты тензора корреляции поляризаций и т. д. С др. стороны, эти матричные элементы могут быть вычислены при определённых предположениях о виде вз-ствия. Сравнение результатов опыта с теор. предсказаниями позволяет проверить теорию.
Общие принципы инвариантности (инвариантность относительно вращений, пространственной инверсии, обращения времени и др.) существенно ограничивают возможный вид матричных элементов процессов и позволяют получить проверяемые на опыте соотношения. Напр., из инвариантности относительно вращений и пространств. инверсии, к-рым отвечают законы сохранения момента кол-ва движения и чётности, следует, что поляризация конечной ч-цы, возникающая при рассеянии неполяризованных ч-ц, направлена по нормали к плоскости рассеяния (плоскости, проходящей через нач. и конечный импульсы ч-цы). Т. о., измеряя направление вектора поляризации, можно выяснить, сохраняется ли чётность во вз-ствии, обусловливающем процесс. Изотопическая инвариантность сильного вз-ствия приводит к соотношениям между сечениями разл. процессов, а также к запрету нек-рых процессов. Напр., при столкновении двух дейтронов не могут образоваться -ч-ца и °-мезон. Эксп. исследование этого процесса подтвердило справедливость изотопич. инвариантности.
Условие унитарности S-матрицы, являющееся следствием сохранения полной вероятности, также накладывает ограничения на матричные элементы процессов. Так, из этого условия вытекает оптическая теорема.
Из общих принципов квант. теории (микропричинности условия, релятивистской инвариантности и др.) следует, что элементы S-матрицы — аналитич. ф-ции в нек-рых областях комплексных переменных. Аналитичность S-матрицы позволяет получить I ряд соотношений между определяемыми из опыта величинами — дисперсионные соотношения, Померанчука теорему и др.
В случае упр. рассеяния бесспиновых ч-ц решение ^ Шрёдингера уравнения для волн. ф-ции (r) при r имеет вид:
Здесь r — расстояние между ч-цами, 20>300>