[по имени амер физика И. А. Раби (I. I. Rabi)], резонансный метод исследования магн моментов ядер, атомов и молекул и внутримол
Вид материала | Документы |
- 32. Эволюция понятия элементарная частица. Неизменность свойств ядер, атомов, молекул, 827.07kb.
- Молекулярная физика и термодинамика статистический и термодинамический методы Молекулярная, 12.67kb.
- Элементы квантовой механики и физики атомов, молекул, твердых тел, 156.85kb.
- X международная конференция Импульсные лазеры на переходах атомов и молекул ampl, 299.2kb.
- Магнитные свойства молекул, 29.04kb.
- Моделирование структур молекул по Огжевальскому, 61.04kb.
- Десятая новая лекция аксиомы единства канарёв, 209.76kb.
- Программа-минимум кандидатского экзамена по специальности, 79.71kb.
- Молекулярная физика и термодинамика. Лекция №1 Молекулярно-кинетическая теория Основные, 10053.18kb.
- Вегето- резонансный тест Оценка по методу Кузьменко (метод Накатани) Диабат (метод, 12.28kb.
611
такому представлению о Р. ограниченно соответствует термин «радионаука» (Radioscience). Co временем, однако, методы Р. проникли и в др. диапазоны частот от очень низких частот (ОНЧ) до -излучения, а также в область исследований волновых процессов не эл.-магн. природы (напр., в акустику).
Р. сформировалась в 30—40-е гг. благодаря бурному развитию радиотехники, радиосвязи, радио- и телевещания и др. Появление радиолокации и радионавигации потребовало освоения новых диапазонов частот и разработки общих физ. принципов генерации, излучения, распространения и приёма радиоволн, модуляции и кодирования радиосигналов и т. д. В СССР развитие Р. связано с именами Л. И. Мандельштама, Н. Д. Папалекси и созданной ими школы.
На первом этапе развитие Р. опиралось на общую теорию колебаний и волн, физ. электронику и электродинамику. Теория колебаний создала матем. аппарат, позволяющий исследовать и управлять процессами в колебат. системах (см. Колебаний и волн теория). Важную роль сыграли исследования нелинейных колебаний и особенно автоколебаний, лежащие в основе работы большинства генераторов эл.-магн. колебаний радиодиапазона.
Быстродействие, простота управления, высокие кпд, перекрытие всех диапазонов частот и мощностей, высокая чувствительность, избирательность и низкий уровень шумов и др. требования, предъявляемые к разл. радиотехнич. устройствам, могут быть удовлетворены только с привлечением разнообразных физ. явлений в газах и конденсированных средах. Поэтому радиофиз. исследованиям сопутствовали, а иногда предшествовали: ас-следование электронной и ионной эмиссии (см. Эмиссионная электроника), разработка методов управления движением заряженных ч-ц (см. Электронная оптика), исследование вз-ствия эл.-магн. полей с электронными потоками, с газоразрядной плазмой и электронно-дырочной плазмой в тв. теле (см. Плазма твёрдых тел), изучение невзаимных хар-к ферритов и т. п. В результате развития представлений об автофазировке и автогруппировке эл-нов, о самосогласованном синхронном вз-ствии частиц и эл.-магн. полей вместо вакуумных диодов, триодов и т. п. в коротковолновых диапазонах появились такие приборы, как клистрон, магнетрон, лампа бегущей волны, лампа обратной волны и др.
Электродинамика, в основном опирающаяся на Максвелла уравнения в линейных средах, обеспечила понимание процессов излучения, распространения и приёма радиоволн. Это позволило создать разл. элементы радиотехнич. аппаратуры как в длинноволновых диапазонах (системы с сосредоточенными параметрами — колебат. контуры, фильтры, трансформаторы и т. п.), так и в коротковолновых диапазонах, особенно на СВЧ, где практически все узлы — системы с распределёнными параметрами (линии передачи, радиоволноводы, объёмные резонаторы и т. п.). Создание множества типов антенн и расчёта трасс распространения радиоволн в атмосфере, земной коре, воде составили содержание автономных разделов Р.
По мере развития Р. её методы стали проникать в др. области физики. В результате Р. как бы «разветвилась» на «физику для радио» и «радио для физики». Новые задачи, а также освоение диапазонов высоких частот привлекли в Р. идеи и методы из др. областей физики, в частности из оптики (линзы, зеркала, интерферометры, поляроиды и т. д.), что привело к появлению нового раздела Р.— квазиоптики (квазиоптич. линии передачи, открытые резонаторы и т. п.). В свою очередь радиофиз. методы, развитые, напр., для сантиметрового диапазона длин волн, проникнув в оптику, заметно расширили её возможности, вызвав к жизни такие разделы, как волоконная оптика, голография, интегральная оптика и т. п., так что и оптич. диапазон частот стал областью приложения методов Р. Иногда это поясняют термином «радиооптика».
В результате взаимных «обогащений» с др. областями физики, с одной стороны, и обособления отд. разделов — с др. стороны, внутри Р. образовалось, кроме квазиоптики, и неск. др. важных «дочерних» направлений. В статистической радиофизике исследуются флуктуационные процессы в колебат. системах, стабильность частоты генераторов, шумы усилителей, неравновесное излучение среды в радиодиапазоне, распространение волн в средах со случайными неоднородностями, разработка и применение методов корреляц. анализа сигналов и др. Квантовая Р. (квант. генераторы и усилители радио- и оптич. диапазонов, см. Квантовая электроника) смыкается с когерентной нелинейной оптикой. Радиоспектроскопия — совокупность тонких методов исследования спектров веществ в радиодиапазоне, позволяющих обнаружить присутствие ничтожных долей примесей (см. Ядерный магнитный резонанс, Электронный парамагнитный резонанс и др.). Радиоастрономия — приём и обработка слабых сигналов от косм. источников (спектральная плотность потока излучения до 10-30 Вт/м2 Гц), разработка антенн и интерферометров с высокой направленностью и угловым разрешением до 10-3—10-4 угл. секунды (см. Радиотелескоп), исследование природы радиоизлучения косм. источниками (их распространения через косм. среду и т. п.). Содержание микроэлектроники состоит в создании твердотельных приборов, интегральных схем и т. п.
Т. о., Р. имеет сложную и сильно разветвлённую структуру и ясно выраженную тенденцию как дальнейшего проникновения в др. области естествознания (геофизику и гидрофизику, акустику, биофизику и др.), так и в др. области частот, мощностей и др. параметров, расширяющих традиц. сферы влияния Р. (релятивистская электроника больших мощностей, микроминиатюризация радиоаппаратуры, рентгеновская оптика).
А. В. Гапонов-Грехов, М. А. Миллер.
^ РАДИОЧАСТОТНЫЙ МАСС-СПЕКТРОМЕТР, масс-спектрометр, в к-ром разделение ионов, различающихся по величине отношения их массы М к заряду е, происходит при движении пучка ионов через неск. сеток-электродов, между к-рыми приложено ВЧ напряжение. Только ионы с определённым М/е увеличивают свою энергию при пролёте через сетки и попадают на коллектор. Р. м.-с., установленные на ракетах и искусств. спутниках, используются для анализа состава атмосферы.
РАДИОЭЛЕКТРОНИКА, термин, объединяющий обширный комплекс областей науки и техники, связанных гл. обр. с проблемами передачи, приёма и преобразования информации с помощью эл.-магн. колебаний и волн. Появился в 50-х гг. 20 в. и явл. в нек-рой степени условным. Р. охватывает радиотехнику и электронику, а также ряд новых областей, выделившихся в результате их развития и дифференциации,— квантовую электронику, оптоэлектронику, твердотельную электронику, микроэлектронику (см. Полупроводниковые приборы), ИК технику, криоэлектронику, акустоэлектронику, хемотронику и др. Р. тесно связана, с одной стороны, с радиофизикой, физикой твёрдого тела, оптикой и механикой, с другой — с электротехникой, автоматикой и технич. кибернетикой. Радиоэлектронная аппаратура часто явл. одним из звеньев системы автоматич. управления (напр., систем управления полётом ракеты или косм. корабля). В самой радиоэлектронной аппаратуре применяются системы автоматич. регулирования (самонастройка частоты, слежение за целью и т. д.). Р. связана также с электронно-вычислит. техникой, т. к. последняя включает электронные устройства, осуществляющие обработку информации («очищение» от помех, приведение к определённому виду). Область использования Р. выходит за пределы точных наук и техники, проникая в медицину, экономику и др.
• Электроника: прошлое, настоящее, будущее. Сб. ст., [пер. с англ.], М., 1979 (Новое в жизни, науке и технике. Серия «Физика», № 5).
612
^ РАДИУС ИНЕРЦИИ, величина r, имеющая размерность длины, с помощью к-рой момент инерции тела относительно данной оси выражается ф-лой I=Mr2, где М — масса тела. Напр., для однородного шара Р. и. относительно оси, проходящей через его центр, равен 0,4R0,632R, где R — радиус шара.
РАДЛЮКС (рлк, rlx), редко применяемое и не вошедшее в стандарт наименование единицы светимости (светности) СИ — люмен на квадратный метр (лм/м2). 1 рлк=10-4 радфот.
РАДФОТ (рф, rph), единица светимости (светности), в системе единиц СГСЛ (см — г — с — люмен), равная люмену на 1 см2. 1 рф=104 радлюкс=104 лм/м2.
^ РАЗВЁРТКА ОПТИЧЕСКАЯ, непрерывное во времени перемещение по поверхности светочувствит. элемента (фотографич. эмульсии, экрану электронно-оптического преобразователя) оптич. изображения самосветящегося или
^ Фотограмма оптич. щелевой развёртки плазменного факела.
подсвеченного вспомогат. источником света объекта с целью исследования быстропротекающих процессов — распространения ударных волн, развития газовых разрядов и др. В отличие от скоростной киносъёмки, при к-рой фиксируются хотя и с большой частотой, но дискретные фазы явления, Р. о. обеспечивает его непрерывную фоторегистрацию.
В типичной схеме Р. о. промежуточное изображение, формируемое первым объективом, совмещается со щелью, «вырезающей» из него малый участок; при развитии процесса это изображение перемещается вдоль щели, оставаясь в её плоскости. Второй объектив переводит изображение со щели на светочувствит. элемент, напр. на фотоплёнку, размещённую в виде кольца снаружи или внутри вращающегося барабана (ось вращения параллельна щели). Разрешающая способность Р. о. по времени равна промежутку времени, за к-рый изображение на плёнке проходит путь, равный собств. ширине. Линейная скорость вращения плёнки, если её закрепляют внутри барабана, достигает 300—400 м/с. При ширине изображения 0,1 мм разрешение по времени может быть (2—3)•10-7 с. Повысить скорость относит. движения плёнки и изображения позволяет зеркальная Р. о, при к-рой плёнка неподвижна, а изображение перемещается за счёт отражения от вращающегося плоского зеркала (угловая скорость зеркала до 105 об/мин) или зеркального многогранника (линейная скорость Р. О. с зеркальным 12-гранником до 4,5•103 м/с, что обеспечивает временное разрешение до 2•10-8 с).
При Р. о. с помощью электроннооптич. преобразователей изображение объекта на фотокатоде перемещается по люминесцентному экрану путём отклонения потока фотоэлектронов. Для этого используют электрич. поля, изменяющиеся во времени по линейному, круговому или др. закону. Послесвечение экрана позволяет фотографировать сразу всю картину Р. о. обычным фотоаппаратом. Скорость записи достигает при этом 3•105 м/с, а разрешение по времени 10-10—10-12 с.
• Дубовик А. С., Фотографическая регистрация быстропротекающих процессов, 2 изд., М., 1975.
Л. Н. Капорский.
^ РАЗЛОЖЕНИЕ СИЛЫ, замена силы, приложенной к точке тв. тела, без изменения её механич. действия, неск. силами, приложенными к точкам того же тела. Задача Р. с. неопределённа; чтобы она стала определённой, необходимо задать дополнит. условия, к-рым должны удовлетворять эти силы. РАЗМАГНИЧИВАНИЕ, уменьшение остаточной намагниченности ферромагн. образца после устранения внеш. намагничивающего поля (см. Намагничивание). Образец считается размагниченным, если векторы намагниченности доменов ориентированы в нём хаотически и ср. намагниченность (или индукция) в любом сечении образца равна нулю (или меньше заданной величины).
К наиболее полному Р. приводит нагрев образца выше темп-ры Кюри (при этом в-во полностью теряет свои ферромагн. св-ва; см. Ферромагнетизм) с последующим охлаждением в отсутствии внеш. поля. Однако в большинстве случаев такой способ Р. недопустим, т. к. в результате нагрева могут измениться механич. и др. св-ва материала. Др. способ Р. заключается в циклич. перемагничивании размагничиваемого образца перем. магн. полем с плавно убывающей до нуля амплитудой (рис.). При
^ Кривая размагничивания образца, обладающего остаточной, намагниченностью Ir, перем. полем H, убывающим до нуля.
этом макс. амплитуда перем. размагничивающего поля, как правило, должна быть не меньше ' величины намагничивавшего поля. Опыт показывает, что эффективность Р. зависит от частоты размагничивающего поля, скорости его убывания, толщины детали и глубины проникновения поля. Чем толще образец, тем ниже должна быть частота размагничивающего поля (для снижения поверхностного эффекта — неполного проникновения высокочастотного поля в массивный образец). Скорость Р. должна быть тем меньше (число циклов Р. тем больше), чем выше магнитная проницаемость материала (т. е. намагниченность в слабых полях). Согласно технич. условиям образец из пластин листовой электротехнич. стали толщиной 0,35— 0,5 мм размагничивают в течение 1 мин плавным уменьшением магн. поля частотой 50 Гц от макс. напряжённости поля 2000—2500 А/м до нуля. Как правило, для Р. достаточно 30— 60 циклов перемагничивания.
^ 0 См. при ст. Намагничивание.
РАЗМАГНИЧИВАЮЩИЙ ФАКТОР (размагничивания коэффициент). При намагничивании во внеш. поле образца или детали из ферромагн. материала разомкнутой формы (напр., цилиндра) на его краях образуются магн. полюсы, создающие внутри образца магн. поле обратного (по отношению к внеш. полю) направления. Это размагничивающее поле полюсов образца Н0 пропорц. его намагниченности /, т. е. H0=NJ. Коэфф. N, связывающий напряжённость собств. поля образца и его намагниченность, наз. Р. ф. или коэфф. размагничивания. Если образец находится во внеш. магн. поле напряжённостью НВ, то истинная напряжённость поля в образце равна Ни=НВ-NJ.
Р. ф. может быть точно рассчитан только для эллипсоидов вращения, к-рые имеют однородную намагниченность ( в частности, для шара N=1/3,
для очень тонкой пластинки ^ N=1, для бесконечно длинного цилиндра в
поперечном поле N=1/2) . Для нек-рых
образцов простой формы Р. ф. рассчитывается по эмпирич. ф-лам, в большинстве случаев Р. ф. определяется экспериментально.
^ РАЗМЕР ЕДИНИЦЫ физической величины, количеств. содержание соответствующей величины (длины, массы и т. п.) в единице. Размеры осн. единиц к.-л. системы единиц устанавливаются при их выборе и воспроизводятся, как правило, эталонами. Размеры осн. единиц, в свою очередь, определяют размеры всех производных единиц данной системы. Так, размер единиц площади и объёма зависит от выбора единицы длины. Для образования ряда единиц разл. размера (кратных единиц и дольных единиц) используется принцип десятичности (см. Международная система единиц).
^ РАЗМЕРНОСТЕЙ АНАЛИЗ, метод установления связи между физ. величинами, существенными для изучаемого явления, основанный на рассмотрении размерностей этих величин. В основе Р. а. лежит требование, согласно к-рому ур-ние, выражающее
613
искомую связь, должно оставаться справедливым при любом изменении единиц входящих в него величин. Это требование совпадает с требованием равенства размерностей величин в левой и правой частях ур-ния. Ф-ла размерности к.-л. физ. .величины В имеет вид:
[В]=LlMmTt,или dimB=LlMmTt (1)
(dim от англ. dimension — размер, размерность). [В] — символ размерности определяемой (производной) физ. величины (обычно берётся в прямые скобки); L, М, Т, . . .— символы величин, принятых за основные (соответственно длины, массы, времени и т. д.); l, m, t, . . . — целые или дробные, положительные или отрицательные вещественные числа, наз. показателями размерности, или размерностью производной величины В. Так, ф-ла размерности для ускорения о записывается в виде [a]=LT-2, для силы — LMT-2. Понятие размерности распространяется и на осн. величины. Принимают, что размерность осн. величины в отношении самой себя равна единице и что от др. величин она не зависит; тогда ф-ла размерности осн. величины совпадает с её символом. Если единица производной величины не изменяется при изменении к.-л. из осн. единиц, то такая величина обладает нулевой размерностью по отношению к соответствующей основной. Так, ускорение обладает нулевой размерностью по отношению к массе. Величины, в размерности к-рых все осн. величины входят в нулевой степени, наз. безразмерными. Выбор числа физ. величин, принимаемых за основные, и самих этих величин в принципе произволен, но практич. соображения приводят к нек-рому ограничению свободы в выборе осн. величин и их единиц.
В ^ СГС системе единиц за осн. величины принимают длину, массу и время. В этой системе размерность физ. величины выражается произведением трёх символов L, М и Т в соответствующих степенях. Международная система единиц (СИ) содержит семь осн. величин: кроме длины, массы и времени, силу тока (символ I), темп-ру (9), силу света (J), кол-во в-ва (N).
Если для исследуемого явления установлено, с какими величинами может быть связана искомая величина, но вид этой связи неизвестен, для её нахождения составляют ур-ние размерностей, в к-ром в левой части будет стоять символ искомой величины со своим показателем размерности, а в правой — произведение символов величин, от к-рых искомая величина зависит, но с неизвестными показателями размерности. Задача нахождения связи между физ. величинами
сводится в этом случае к отысканию значений соответствующих показателей размерности. Если, напр., требуется определить время т прохождения пути s телом массой m, движущимся поступательно и прямолинейно под действием пост. силы f, то можно составить ур-ние размерности, имеющее вид:
T=LxMy(LMT-2)z, (2)
где х, у, z неизвестны. Требование равенства показателей размерности левой и правой частей в ур-нии (2) приводит к системе ур-ний: x+z=0, y+z=0, -2z=1, откуда следует, что x=y=l/2, z=-1/2 и
=Cms/f. (3)
Безразмерный коэфф. ^ С, равный согласно законам механики 2, в рамках Р. а. определить нельзя.
В этом состоит своеобразие Р. а. Устанавливаемая с его помощью зависимость искомой величины от величин, определяющих исследуемое явление, находится с точностью до пост. коэфф. Для получения точных количественных соотношений нужны дополнит. данные. Поэтому Р. а. не явл. универсальным методом. Он нашёл плодотворное применение в тех областях физики (гидравлике, аэродинамике и др.), где строгое решение задачи часто наталкивается на значит. трудности, в частности из-за большого числа параметров, определяющих физ. явление. При решении сложных задач на основе Р. а. большую роль сыграла теорема (её наз. -теоремой), согласно к-рой всякое соотношение между нек-рым числом размерных величин, характеризующих данное физ. явление, можно представить в виде соотношения между меньшим числом безразмерных комбинаций, составленных из этих величин. Эта теорема связывает Р. а. с теорией физ. подобия, в основе к-рой лежит утверждение, что если все соответствующие безразмерные характеристики (подобия\критерии) для двух явлений одинаковы, то эти явления физически подобны (см. Подобия теория),
• Бриджмен П. В., Анализ размерностей, пер. с англ., Л.—М., 1934; Коган Б. Ю., Размерность физической величины, М., 1968; Сена Л. А., Единицы физических величин и их размерности, 2 изд.,М., 1977; Седов Л. И., Методы подобия и размерности в механике, 9 изд., М., 1981.
^ РАЗМЕРНОСТЕЙ ТЕОРИЯ, см. Размерностей анализ.
РАЗМЕРНОСТЬ единицы физической величины, выражение, показывающее, во сколько раз изменится единица данной величины при изменении единиц величин, принятых в данной системе за основные. Р. представляет собой одночлен, составленный из произведения обобщённых символов осн. единиц в различных (целых или дробных, положительных или отрицательных) степенях, к-рые наз. показателями Р. (подробнее см. Размерностей анализ).
^ РАЗМЕРНЫЕ ЭФФЕКТЫ, явления в тв. телах, наблюдающиеся в условиях, когда размеры исследуемого образца сравнимы с одной из характерных длин — длиной свободного пробега l носителей заряда, длиной волны де Бройля , диффузионной длиной и т. п. Различают классич. и квант. Р. э. Классич. Р. э. наблюдаются в поведении статич. электропроводности тонких металлич. и полупроводниковых плёнок и проволок, толщина d к-рых сравнима с длиной l свободного пробега эл-нов. При уменьшении d уд. сопротивление монотонно возрастает, что связано с дополнит. рассеянием эл-нов на границах образца. Величина существенно зависит от характера рассеяния (зеркального или диффузного). Во внеш. сильном магн. поле Р. э. могут возникать, когда d сравнимо с размерами орбиты эл-нов проводимости в магн. поле Н, т. к. в зависимости от величины напряжённости поля Н орбита может укладываться либо не укладываться в образце. В последнем случае Р. э. проявляются в виде осцилляции электропроводности при изменении магн. поля. Аналогичные эффекты возможны и на высоких частотах (радиочастотные Р. э.).
Квант. Р. э. обнаруживаются в случае, когда толщина плёнки или диаметр проволоки сравнимы с де-бройлевской длиной волны эл-на. Р. э. связаны с квантованием квазиимпульса эл-на, вследствие чего энергетич. зоны электронного спектра расщепляются на подзоны (см. Зонная теория). Квант. Р. э. проявляются в осцилляционной зависимости уд. сопротивления и др. характеристик (кинетич. коэфф.) от толщины образца d.
Анизотропные Р. э. наблюдаются в анизотропных проводниках (как при естеств. анизотропии, так и наведённой магн. полем, давлением и т. д.) с неск. группами носителей заряда (эл-ны и дырки, эл-ны разных «долин» энергетич. спектра и т. п.). Пропускание тока через образец сопровождается пространств. разделением носителей, относящихся к разным группам, в направлении, перпендикулярном к току. Если диффузионная длина носителей сравнима с поперечными размерами образца, такое разделение носителей приводит к существенной размерной зависимости электропроводности и др. кинетич. коэффициентов.
• Л а р с е н Д. К., Размерные эффекты в электропроводности тонких металлических пленок и проволок, в кн.: Физика тонких пленок, пер. с англ., т. 6, М., 1973; Абрикосов А. А., Введение в теорию нормальных металлов, М., 1972; Р а ш б а Э. И., Грибников 3. С., Кравченко В. Я., Анизотропные размерные эффекты в полупроводниках и полуметаллах, «УФН», 1976, т. 119, в. 1, с. 3—47.
Э. М. Эпштейн,
614
^ РАЗНОСТНЫЙ МЕТОД ИЗМЕРЕНИЙ, см. Дифференциальный метод измерений.
РАЗНОСТНЫЙ ТОН, комбинационный топ с частотой 1-2, возникающий в нелинейной акустич. системе при воздействии на неё двух звуковых колебаний с частотами 1 и 2.
^ РАЗНОСТЬ ПОТЕНЦИАЛОВ между двумя точками стационарного электрич. или гравитац. поля измеряется работой, совершаемой силами поля при перемещении единичного положит. заряда или, соответственно, единичной массы из точки с большим потенциалом в точку с меньшим потенциалом. Если 1 и 2 — потенциалы нач. и конечной точек траектории заряда (или массы), то Р. п. u=1-2; изменение потенциала =2-1=-u.
Работой произвольного электрич. поля по перемещению единичного положит. заряда из одной точки в другую измеряется электрическое напряжение между этими точками; в случае потенциального поля напряжение совпадает с Р. п.
^ РАЗНОСТЬ ХОДА лучей, разность оптических длин путей двух световых лучей, имеющих общие нач. и конечную точки. Понятие Р. х. играет осн. роль в описании интерференции света и дифракции света.
^ РАЗРЕЖЕННЫХ ГАЗОВ ДИНАМИКА, см. Динамика разреженных газов.
РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельное изображение двух близких друг к другу точек объекта. Наименьшее линейное (или угловое) расстояние между двумя точками, начиная с которого их изображения сливаются и перестают быть различными, наз. линейным (или угловым) пределом разрешения. Обратная ему величина служит количеств. мерой Р. с. оптич. приборов. Идеальное изображение точки, как элемента предмета, может быть получено от волновой сферич. поверхности. Реальные оптич. системы имеют входные и выходные зрачки конечных размеров, ограничивающие волновую поверхность. Благодаря дифракции света даже при отсутствии аберраций и ошибок изготовления оптич. система изображает точку в монохроматич. свете в виде светлого пятна, окружённого попеременно тёмными и светлыми кольцами. Пользуясь теорией дифракции, можно вычислить наименьшее расстояние, разрешаемое оптич. системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображение раздельно. В соответствии с условием, введённым англ. учёным Дж. У. Рэлеем (1879), изображения двух точек можно видеть раздельно, если центр дифракц. пятна каждого из них пересекается с краем первого тёмного кольца другого (рис.).
Если точки предмета самосветящиеся и излучают некогерентные лучи, выполнение критерия Рэлея соответствует тому, что наименьшая освещённость между изображениями разрешаемых точек составит 74% от освещённости в центре пятна, а угловое расстояние между центрами дифракц. пятен (максимумами освещённости) определится выражением =1,21/D, где — длина волны света, D — диаметр входного зрачка оптич. системы (см. Диафрагма в оптике).
Распределение освещённости Е в изображении двух точечных источников света, расположенных так, что угловое расстояние между максимумами освещённости равно угловой величине радиуса центрального дифракц. пятна (= — условие Рэлея).
Если оптич. система имеет фокусное расстояние f, то линейная величина предела разрешения =l,21f/D. Предел разрешения телескопов и зрительных труб выражают в угловых секундах и определяют по формуле =140/D (при =560 нм и D в мм) (о Р. с. микроскопов см. в ст. Микроскоп). Приведённые формулы справедливы для точек, находящихся на оси идеальных оптич. приборов. Наличие аберраций и ошибок изготовления снижает Р. с. реальных оптич. систем. Р. с. реальной оптич. системы падает также при переходе от центра поля зрения к его краям. Р. с. оптич. прибора Rоп, включающего комбинацию оптич. системы и приёмника (фотослой, катод электронно-оптического преобразователя и др.), связана с Р. с. оптич. системы прибора Rос и приёмника Rп приближённой формулой 1/Rоп=1/Rос+1/Rп, из к-рой следует, что целесообразно применение лишь таких сочетаний, когда Rос и Rп одного порядка. Р. с. прибора может быть оценена по его аппаратной функции.
• Тудоровский А. И., Теория оптических приборов, 2 изд., т. 1, М.—Л., 1948; Ландсберг Г. С., Оптика, 5 изд.. М., 1976.
Л. Н. Капорский.
^ РАЗРЕШЁННАЯ ЗОНА, область значений энергии, к-рые может принимать квантовая система. См. Зонная теория.
РАЗРЕШЁННЫЕ ЛИНИИ, спектральные линии, возникающие при излучат. квантовых переходах, для к-рых выполняются отбора правила (в отличие от запрещённых линий).
^ РАЗРЫВНЫЕ КОЛЕБАНИЯ, колебания, при к-рых наряду со сравнительно медленными изменениями величин, характеризующих состояние колебат. системы, в нек-рые моменты происходят столь быстрые изменения этих величин, что их можно рассматривать как скачки, а весь колебат.
процесс в целом — как последовательность медленных изменений состояния системы, начинающихся и кончающихся мгновенным его изменением (скачками или разрывами). Релаксационные колебания часто рассматривают как Р. к.
^ РАЗРЯД С ПОЛЫМ КАТОДОМ, разряд с катодом (чаще всего в виде полого цилиндра), рабочая поверхность к-рого охватывает часть разрядного пространства. Р. с п. к. характеризуется в несколько раз большей концентрацией заряженных и возбуждённых ч-ц по сравнению с их концентрацией при обычной форме катода. Это обусловлено специфической конфигурацией электрического поля внутри катода (рис.).
^ Движение электрона в полом катоде.
Эл-ны, эмитируемые внутр. поверхностью цилиндра, ускоряются в области катодного падения потенциала и, пролетев плазму, попадают в поле противоположного направления, отражаются назад в плазму и т. д. В результате время жизни эл-на внутри полого катода оказывается большим, что и приводит к более эффективным возбуждению и ионизации атомов.
• Москалев Б. И., Разряд с полым катодом, М., 1969.
Л. А. Сена.
^ РАЗРЯДЫ В ГАЗАХ, см. Электрические разряды в газах.
РАМAHA ЭФФЕКТ (комбинационное рассеяние света), рассеяние света в-вом, сопровождающееся изменением его длины волны. Открыт в 1928 Г. С. Ландсбергом и Л. И. Мандельштамом на кристаллах и инд. физиками Ч. В. Раманом и К. С. Кришнаном на жидкостях. Термин «Р. э.» распространён в зарубежной лит-ре. Подробнее см. Комбинационное рассеяние света.
^ РАМЗАУЭРА ЭФФЕКТ, в узком смысле — высокая «проницаемость» атомов или молекул газа для медленных эл-нов; в более общем смысле — аномальный (с позиций классич. физики) характер вз-ствия эл-нов с нейтральными атомами (молекулами) нек-рых газов. Открыт в 1921 нем. физиком К. Рамзауэром (С. Ramsauer) при изучении рассеяния эл-нов в аргоне.
Р. э. выражается в наличии глубокого минимума в эфф. сечении столкновений эл-нов с атомами. Для атомов Ar минимум наблюдается при энергиях эл-нов ок. 1 эВ (так, что эл-ны проходят сквозь газ не рассеиваясь) с последующим возрастанием до максимума при энергии ок. 12 эВ. Это явление, необъяснимое в рамках клас-
615
сич. механики ч-ц, истолковывается при рассмотрении с позиций квант. механики тем, что в процессах вз-ствия с атомами медленные эл-ны ведут себя как волны (см. Волны де Бройля). Квантовомеханич. расчёты обосновали экспериментально установленный Р. э. в Ar и др. более тяжёлых инертных газах и его отсутствие в Н2, Не, Ne и др. газах.
• Арцимович Л. А., Элементарная физика плазмы, 3 изд., М., 1969; Месси Г., Б а р х о п В., Электронные и ионные столкновения, пер. с англ., М., 1958.
^ РАМОЧНАЯ АНТЕННА, антенна в виде одного или неск. витков провода. Р. а. эквивалентна магн. диполю и имеет соответствующую ему тороидальную диаграмму направленности. Для повышения эффективности Р. а. снабжают ферромагн. сердечниками.
^ РАМСДЕНА ОКУЛЯР, см. Окуляр.
РАСПРЕДЕЛЁННАЯ СИСТЕМА, то же, что система с распределёнными параметрами.
РАСПРОСТРАНЕНИЕ РАДИОВОЛН, процесс передачи эл.-магн. колебаний радиодиапазона (см. Радиоволны) в пространстве от одного места к другому, в частности от передатчика к приёмнику. В естеств. условиях Р. р. происходит в разл. средах, напр. в атмосфере, космической плазме, в поверхностном слое Земли.
^ Общие закономерности Р. р. Скорость Р. р. в свободном пространстве в вакууме равна скорости света с. Полная энергия, переносимая радиоволной, остаётся постоянной, а плотность потока энергии убывает с увеличением расстояния r от источника обратно пропорционально r2. Р. р. в др. средах происходит с фазовой скоростью, отличающейся от с и в равновесной среде сопровождается поглощением эл.-магн. энергии. Оба эффекта объясняются возбуждением колебаний эл-нов и ионов среды под действием электрич. поля волны. Если напряжённость поля E гармонич. волны мала по сравнению с напряжённостью поля, действующего на заряды в самой среде (напр., на эл-н в атоме), то колебания происходят также по гармонич. закону с частотой пришедшей волны. Колеблющиеся эл-ны излучают вторичные радиоволны той же частоты, но с др. амплитудами и фазами. В результате сложения вторичных волн с приходящей формируется результирующая волна с новой амплитудой и фазой. Сдвиг фаз между первичной и переизлучёнными волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами явл. причиной поглощения радиоволн.
Амплитуда волны убывает с расстоянием по закону А =(A0/r)ехр(-(/c)r) ,
а фаза волны по закону =t-(/c)n,
где — показатель поглощения, n — преломления показатель; n и зависят от диэлектрической проницаемости среды, её проводимости о и частоты волн :
Фазовая скорость vф=c/n, коэфф. поглощения =(/c). Среда ведёт себя
как диэлектрик, если (4/)2<<1,
и как проводник при (4p/)2>>1.
В первом случае n, поглощение
мало, во втором n(2/).
В среде и явл. функциями частоты (см. ^ Дисперсия волн). Вид частотной зависимости и определяется структурой среды. Дисперсия радиоволн особенно существенна в тех случаях, когда частота волны близка к характерным собств. частотам среды (напр., при Р. р. в ионосферной и косм. плазме, см. ниже).
При Р. р. в средах, не содержащих свободных эл-нов (тропосфера, толща Земли), происходит смещение связанных эл-нов в атомах и молекулах среды в сторону, противоположную
полю волны E, при этом n>1, vф
(радиосигнал, несущий энергию, распространяется с групповой скоростью vгр<с). В плазме поле волны вызывает смещение свободных эл-нов в направлении E, при этом n<1 и vф>с.
В однородных средах радиоволны распространяются прямолинейно, подобно световым лучам. Процесс Р. р. в этом случае подчиняется законам геометрической оптики. Однако реальные среды неоднородны. В них n, а следовательно, и vф различны в разных участках среды, что приводит к искривлению траектории радиоволны. Происходит рефракция (преломление) радиоволн. В случае плавных (в масштабе ) неоднородностей справедливо приближение геом. оптики. Если n зависит от одной координаты, напр. высоты h (плоскослоистая среда), то при прохождении
волны через каждый плоский слой выполняется ^ Снелля закон преломления: луч, падающий на неоднородную среду в точке с n0=1 под углом 0, в пространстве искривляется так, что в произвольной точке среды h соблюдается соотношение:
n(h)sin(h)=sin0. (2)
Если n убывает при увеличении h, то в результате рефракции луч, по
мере распространения, отклоняется от вертикали и на некоторой высоте hm становится параллельным горизонтальной плоскости, а затем распространяется вниз (рис. 1, а). Макс. высота hm, на к-рую луч может углубиться в неоднородную плоскослоистую среду, зависит от угла падения 0 и определяется из условия:
n(hm)=sin0. (3)
В область h>hm лучи не проникают, и, согласно приближению геом. оптики, волновое поле в этой области должно быть равно 0. В действительности вблизи плоскости h=hm волновое поле возрастает, а при h>hт убывает экспоненциально (рис. 1, б). Нарушение законов геом. оптики при Р. р. связано с дифракцией волн, вследствие к-рой радиоволны могут проникать в область геом. тени. На границе области геом. тени образуется сложное распределение волновых полей. Дифракция радиоволн возникает при наличии на их пути препятствий (непрозрачных или полупрозрачных тел). Дифракция особенно существенна в тех случаях, когда размеры препятствий сравнимы с .
Если Р. р. происходит вблизи резкой границы (в масштабе X) между двумя средами с разл. электрич. свойствами (напр., атмосфера — поверхность Земли или тропосфера — нижняя граница ионосферы для достаточно длинных волн), то при падении радиоволн на резкую границу образуются отражённая и преломлённая (прошедшая) радиоволны. Если отражение происходит от границы проводящей среды (напр., от поверхностного слоя Земли), то глубина проникновения в него определяется толщиной скин-слоя (см. Скин-эффект).
В неоднородных средах возможно , волноводное Р. р., при к-ром происходит локализация потока энергии между определёнными поверхностями, за счёт чего волновые поля между ними убывают с расстоянием медленнее, чем в однородной среде (атмосферный волновод). В средах с плавными неоднородностями локализация связана с рефракцией, а в случае резких границ — с отражением.
В среде, содержащей случайные локальные неоднородности, вторичные волны излучаются беспорядочно в
^ Рис. 1. а — рефракция радиоволн в плоскослоистой среде; б — зависимость квадрата амплитуды напряжённости электрич. поля радиоволны от высоты h.
616
разл. направлениях. Рассеянные волны частично уносят энергию исходной волны, что приводит к её ослаблению. При рассеянии на неоднородностях размером l<< (т. н. рассеяние Рэлея; см. Рэлея закон) рассеянные волны распространяются почти изотропно. В случае рассеяния на крупномасштабных прозрачных неоднородностях рассеянные волны распространяются в направлениях, близких к исходной волне. При l возникает сильное резонансное рассеяние.
Влияние поверхности Земли на Р. р. зависит от расположения относительно неё передатчика и приёмника. Р. р.— процесс, захватывающий большую область пространства, но наиболее существенную роль в Р. р.
^ Рис. 2. Эллипсоидальная область пространства, существенная при распространении радиоволн (радиотрасса); А — излучатель; В — приёмник.
играет область, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах к-рого ^ А и В на расстоянии r расположены передатчик и приёмник (радиотрасса, рис.2). Большая ось эллипсоида равна r+(/4), а малая ось ~(r/2). Ширина трассы уменьшается с убыванием . Если высоты z1 и z2, на к-рых расположены антенны передатчика и приёмника над поверхностью Земли, велики по сравнению с , то эллипсоид не касается поверхности Земли, и она не влияет на Р. р. (рис. 2, а). При понижении обеих или одной из конечных точек радиотрассы эллипсоид коснётся поверхности Земли (рис. 2, б). Отражение радиоволн от земной поверхности близко к зеркальному, если на ней внутри эллипсоида уложится неск. первых зон Френеля, а проводимость почвы достаточно высока. При этом радиоволна в точке приёма определяется интерференцией прямой и отражённой волн (см. Интерференция волн). Интерференц. максимумы и минимумы обусловливают лепестковую структуру поля в зоне приёма, к-рая характерна для метровых и более коротких радиоволн. Если (z1/)<1 и (z2/)>1, то радиотрасса выделяет участок поверхности Земли,
ограниченный эллипсом с осями r+(/4)
и (r/2). Качество радиосвязи в этом случае определяется проводимостью а почвы именно в этой области, причём особенно большую роль играют оба конечных участка радиотрассы. Почвы, образующие поверхностный
слои земной коры, а также воды морей и океанов обладают значит. электропроводностью. Напр., для осадочных пород в поверхностном слое земной коры ~107—108 См. Но т. к. n и — функции частоты , то для сантиметровых волн все виды земной поверхности имеют свойства диэлектрика. Для метровых и более длинных волн Земля обычно проводник, в к-рый волны проникают на глубину
скин-слоя толщиной d=(1/2)(c0/)
(0 — длина волны в вакууме). Поэтому для подземной и подводной радиосвязи используются в основном длинные и сверхдлинные волны.
Выпуклость земной поверхности ограничивает расстояние, на к-ром из
Pис. 3. Дальность прямой видимости r ограничена выпуклостью земной поверхности; R0 — радиус Земли, z1 и z2 — высоты передающей A и приёмной В антенн.
точки приёма ^ В «виден» передатчик А (область «прямой видимости», рис. 3). Однако радиоволны могут проникать в область тени на большее расстояние
~3R20 (R0 — радиус Земли), огибая Землю, в результате дифракции. Практически в эту область за счёт дифракции могут проникать только километровые и более длинные волны (рис. 4). За горизонтом поле растёт
^ Рис. 4. График, иллюстрирующий связь дальности r распространения от величины W= 20lg|E/E*|, где Е — напряжённость поля радиоволны в реальных условиях распространения с учётом огибания выпуклости земной поверхности (излучатель расположен на поверхности Земли), Е* — напряжённость поля без учёта дифракции, для разных частот.
с увеличением высоты z1, на к-рую поднят излучатель, и быстро (почти экспоненциально) уменьшается при удалении от него.
Влияние рельефа земной поверхности на Р. р. зависит от высоты неровностей h, их горизонтальной протяжённости I, и угла падения волны на поверхность. Если неровности достаточно малы и пологи, так что khcos<1 (k — волновое число) и выполняется т. н. критерий Рэлея: k2l2cos<1, то они слабо влияют на Р. р. Влияние неровностей зависит также от поляризации волн. Напр., для горизонтально поляризованных
волн оно меньше, чем для волн, поляризованных вертикально. Когда неровности не малы и не пологи, энергия радиоволны может рассеиваться (радиоволна отражается от них). Высокие горы и холмы с h>, «возмущают» волновое поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отражённых волн. Вершина горы служит естеств. ретранслятором. Это существенно при распространении метровых радиоволн в гористой местности (рис. 5).
Фазовая скорость радиоволн, распространяющихся вдоль земной поверхности (земных волн) вблизи излучателя, зависит от её электрич.
^ Рис. 5. Траектории радиоволн при дифракции на непологих неровностях.
свойств. Однако на расстоянии в неск. , от излучателя vфc. Если радиоволны распространяются над электрич. неоднородной поверхностью, напр. сначала над сушей, а затем над морем, то при пересечении береговой линии резко изменяется амплитуда и направление Р. р. (береговая рефракция, рис. 6).
^ Рис. 6. Изменение напряжённости электрич. поля волны при пересечении береговой линии.
Р. р. в тропосфере. Тропосфера -область атмосферы между поверхностью Земли и т. н. тропопаузой (рис. 7), в к-рой темп-ра воздуха обычно убывает с высотой h. Высота тропопаузы на земном шаре не одинакова, она больше над экватором, чем над полюсами, а в средних широтах, где существует система сильных западных ветров, меняется скачкообразно. Тропосфера состоит из смеси газов и паров воды; её проводимость для радиоволн с > неск. см пренебрежимо мала.
617
^ Рис. 7. Зависимость темп-ры Т воздуха и концентрации N эл-нов от высоты h.
Тропосфера обладает свойствами, близкими к вакууму, т. к. у поверхности Земли n==1,0003 и vф лишь немного меньше с. С увеличением высоты плотность воздуха надает, а поэтому и n уменьшаются, ещё более приближаясь к 1. Это приводит к отклонению траекторий радиолучей к Земле (рис. 1, а). Такая т. н. нормальная тропосферная рефракция способствует Р. р. за пределы прямой видимости, т. к. за счёт рефракции волны могут огибать выпуклость Земли. Практически этот эффект может играть роль только для УКВ. Для более длинных волн преобладает огибание выпуклости Земли за счёт дифракции.
Метеорологич. условия могут ослаблять или усиливать рефракцию по сравнению с нормальной, т. к. плотность воздуха зависит от давления, темп-ры и влажности. Обычно в тропосфере давление газов и темп-ра с высотой уменьшаются, а давление водяного пара увеличивается. Однако при нек-рых метеорологич. условиях (напр., при движении нагретого над сушей воздуха над морем) темп-ра воздуха с высотой увеличивается (и н в е р с и я т е м п - р ы). Особенно велики отклонения летом на высоте 2—3 км, когда часто образуются температурные инверсии и облачные слои. При этом преломление радиоволн в тропосфере может стать столь сильным, что вышедшая под небольшим углом к горизонту радиоволна на нек-рой высоте изменит направление и вернётся обратно к Земле. В пространстве, ограниченном снизу земной поверхностью, а сверху — рефрагирующим слоем тропосферы, волна может распространяться на очень большие расстояния (в о л н о в о д н о е р а с п р о с т р а н е н и е).
В тропосферных волноводах, как правило, могут распространяться волны с <1 м (рис. 8).
Поглощение радиоволн в тропосфере пренебрежимо мало для всех радиоволн вплоть до сантиметрового диапазона. Поглощение сантиметровых и более коротких волн резко увеличивается, когда частота волны совпадает с одной из собств. частот колебаний молекул воздуха (резонансное поглощение). Молекулы получают от приходящей волны энергию, к-рая превращается в теплоту и только частично передаётся вторичным волнам. Известен ряд линий резонансного поглощения в тропосфере: =1,35 см, 1,5 см, 0,75 см (поглощение в парах воды) и =0,5 см,
^ Рис. 8. Траектории УКВ в тропосферном волноводе.
0,25 см (поглощение в кислороде). Между резонансными линиями лежат области более слабого поглощения (о к н а п р о з р а ч н о с т и).
Ослабление радиоволн может быть также вызвано рассеянием на неоднородностях, возникающих при турбулентном движении воздушных масс (см. Турбулентность). Рассеяние резко увеличивается, когда в воздухе
^ Рис. 9. Рассеяние радиоволн на мелкомасштабных неоднородностях.
присутствуют капельные неоднородности в виде дождя, снега, тумана. Почти изотропное рассеяние Рэлея на мелкомасштабных неоднородностях делает возможной радиосвязь на расстояниях, значительно превышающих прямую видимость (рис. 9). Т. о., тропосфера существенно влияет на распространение УКВ. Для декаметровых и более длинных волн тропосфера практически прозрачна и на их распространение влияет земная поверхность и более высокие слои атмосферы.
Р. р. в ионосфере. Ионосферу образуют верхние слои земной атмосферы, в к-рой газы частично (до 1%) ионизированы под влиянием УФ, рентгеновского и корпускулярного солнечного излучения. Ионосфера электрически нейтральна, она содержит равное количество положит. и отрицат. ч-ц, т. е. является плазмой. Достаточно большая ионизация, оказывающая влияние на Р. р., начинается на высоте 60 км (слой D), увеличивается до высоты 300—400 км, образуя слои E, F1, F2, и затем медленно убывает (рис. 7). В гл. максимуме концентрация эл-нов N достигает 106 см-3. Зависимость N от высоты меняется со временем суток, года, с солнечной активностью, а также с широтой и долготой. Ионизированный слой между 200 и 400 км состоит в основном из равного количества ионов O+ и эл-нов. Эти ч-цы погружены в нейтральный газ с концентрацией 108 см-3, состоящий в основном из ч-ц О2, О, N2 и Не.
В многокомпонентной плазме, содержащей эл-ны, ионы и нейтральные молекулы и пронизанной магн. полем Земли (см. ^ Земной магнетизм), могут возникать разл. виды собств. колебаний, имеющих разные частоты. Напр., плазменные (ленгмюровские)
частоты эл-нов 0=(4Ne2/m) и ионов 0=(4Ne2/M), гиромагнитные
частоты эл-нов H=eH0/mc и ионов H =eH0/Mc, где m, М — массы эл-на
и иона, е — их заряд, N — концентрация, Н0 — напряжённость магн. поля Земли. Т. к. М>>m, то 0>>0, H>>H. Напр., для эл-нов H/2= 1,4 МГц, а для ионов атомарного кислорода H/2=54 Гц.
В зависимости от частоты радиоволны осн. роль в Р. р. играют те или др. виды собств. колебаний, поэтому электрич. свойства ионосферы различны для разных участков радиодиапазона. При высоких ионы не успевают следовать за изменениями поля, и в Р. р. принимают участие только эл-ны. Вынужденные колебания свободных эл-нов ионосферы происходят в противофазе с действующей силой и вызывают поляризацию плазмы в сторону, противоположную электрич. полю волны Е. Поэтому диэлектрич. проницаемость ионосферы <1. Она уменьшается с уменьшением частоты: =1-20/2. Учёт соударений эл-нов с атомами и ионами даёт более точные формулы для и
ионосферы: =1-20/(2+v2); =20v/4(2+2). Здесь - эффективная частота соударений. Для декаметровых и более коротких волн в большей части ионосферы 2>>v2 и показатели преломления n и поглощения к приближённо равны: n(1-20/2), 2/. Т. к. n<1,
то фазовая скорость Р. р. vф=c/n>с,
групповая скорость vгр=cn<с.
Поглощение в ионосфере пропорционально v, т. к. чем больше число столкновений, тем большая часть энергии, получаемой эл-ном из волны, переходит в тепло. Поэтому поглощение больше в нижних областях ионосферы (слой D), где v больше, т. к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и могут распространяться на большие расстояния.
Рефракция радиоволн в ионосфере. В ионосфере могут распространяться
618
только радиоволны с частотой >0. При <0 n становится чисто мнимым и эл.-магн. поле экспоненциально убывает в глубь плазмы. Радиоволна с частотой , падающая на ионосферу вертикально, отражается от уровня, на к-ром =0 и n=0. В нижней части ионосферы электронная концентрация и 0 увеличиваются с высотой, поэтому с увеличением и посланная с Земли волна всё глубже проникает в ионосферу. Макс. частота радиоволны, к-рая отражается от слоя ионосферы при вертикальном падении, наз. к р и т и ч. ч а с т о т о й с л о я: кр=0макс=(4e2Nмакс/m). Критич. частота
слоя ^ F2 (гл. максимума) изменяется в течение суток и года в широких пределах (от 3—5 до 10 МГц). Для волн с >кр (F2) показатель преломления не обращается в ноль и падающая вертикально волна проходит через ионосферу, не отражаясь.
^ Рис. 10. Схематич. изображение радиолучей определённой частоты при разл. углах падения на ионосферу.
При наклонном падении волны на ионосферу происходит рефракция, как в тропосфере. В нижней части ионосферы vф увеличивается с высотой (вместе с увеличением N). Поэтому траектория луча отклоняется по направлению к Земле (рис. 10). Радиоволна, падающая на ионосферу под углом 0, поворачивает к Земле на высоте h, для к-рой выполнено условие (3). Макс. частота волны, отражающейся от ионосферы при падении под углом 0 (т. е. для данной дальности трассы), равна: мпч=крseс0>кр и наз. макс. применимой частотой (МПЧ). Волны с <мпч, отражаясь от ионосферы, возвращаются на Землю, что используется для дальней радиосвязи. Вследствие сферичности Земли величина угла 0 ограничена и дальность связи при однократном отражении от ионосферы 3500—4000км. Связь на большие расстояния осуществляется за счёт неск. последоват. отражений от ионосферы и Земли «скачков» (рис. 11, а). Возможны и более сложные, волноводные траектории, возникающие за счёт горизонтального градиента N или рассеяния на неоднородностях ионосферы при Р. р. с частотой >мпч. В результате рассеяния угол падения луча на слой F2 оказывается больше, чем при обычном распространении.
^ Рис. 11. Распространение коротких волн между Землёй и ионосферой: а — многоскачковая траектория; б — скользящая траектория.
Луч испытывает ряд последоват. отражений от слоя F2, пока не попадёт в область с таким градиентом N, к-рый вызовет отражение части энергии назад к Земле (рис. 11, б).
^ Влияние магн. поля Земли Н0. В магн. поле Н0 на эл-н, движущийся со скоростью V, действует Лоренца сила F=-e/c[vH0], под влиянием к-рой
он вращается по окружности в плоскости, перпендикулярной H0, с гироскопич. частотой H. Траектория каждой заряженной ч-цы — винтовая линия с осью вдоль Н0. Действие силы Лоренца приводит к изменению хар-ра вынужденных колебаний эл-нов под действием электрич. поля волны, а следовательно, к изменению электрич. свойств среды. В результате ионосфера становится анизотропной гиротропной средой, электрич. свойства к-рой зависят от направления Р. р. и описываются не скалярной величиной г, а тензором диэлектрич. проницаемости ij. Падающая на такую среду волна испытывает двойное лучепреломление, т. е. расщепляется на две волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. Если направление P. p. H0, то падающую волну можно представить себе в виде суммы двух линейно поляризованных волн с ЕН0 и Е║Н0. Для первой «необыкновенной» волны (е) характер вынужденного движения эл-нов под действием поля волны E изменяется (появляется компонента ускорения, перпендикулярная E) и поэтому изменяется п. Для второй (о) «обыкновенной» волны вынужденное движение остаётся таким же, как и без поля Н0 (при v║H0 сила Лоренца равна 0). Для этих двух волн (без учёта соударений) квадраты показателей преломления равны:
При Р. р. вдоль Н0:
В последнем случае обе волны имеют круговую поляризацию, причём у необыкновенной волны вектор Е вращается в сторону вращения эл-на, а у обыкновенной — в противоположную сторону. При произвольном направлении Р. р. (относительно Н0) поляризация нормальных волн эллиптическая.
По мере Р. р. в ионосфере увеличивается сдвиг фаз между волнами и изменяется поляризация суммарной волны. Напр., при Р. р. вдоль Н0 это приводит к повороту плоскости поляризации (Фарадея эффект), а при Р. р. перпендикулярно Н0 — к периодич. чередованию линейной и круговой поляризаций (см. Коттона — Мутона эффект). Т. к. показатели преломления волн различны, отражение их происходит на разной высоте (рис. 12). Направление волнового вектора k при Р. р. в ионосфере может отличаться от vгр.
^ Рис. 12. Расщепление радиоволны в результате двойного лучепреломления в ионосфере.
1>1>1>1>