Методичка №47 : Фармация Физиология «жкт»

Вид материалаМетодичка

Содержание


Энергетический обмен
Пороги энергетического обмена
Порог анаэробного обмена (ПАНО)
Уровни энергетического обмена
Характеристика энергетических уровней
Уровень использования свободной АТФ
Уровень использования креатинфосфата
Уровень анаэробного гликолиза
Подобный материал:
1   ...   10   11   12   13   14   15   16   17   ...   78
^

Энергетический обмен


Обмен веществ и энергии - это совокупность химических и физических превращений, происходящих в живом организме и обеспечивающих его жизнедеятельность.
Обмен веществ складывается из процессов ассимиляции и диссимиляции.
Совокупность синтетических процессов, при которых расходуется энергия, носит название ассимиляции, пластического обмена или анаболизма.
Совокупность процессов распада соединений, протекающих с высвобождением энергии, называется диссимиляцией, энергетическим обменом или катаболизмом.
Единственным источником энергии для человека является окисление органических веществ (белков, жиров, углеводов) поступающих в организм с пищей. При расщеплении пищевых продуктов до конечных элементов - углекислого газа и воды, выделяется энергия. Часть выделившейся энергии используется для механической работы, выполняемой мышцами, другая часть используется для синтез сложных соединений (холестерина, некоторых витаминов) или запасается в виде высокоэнергети ческих соединений - молекул АТФ(аденозин- трифосфата). Процессы ассимиляции и диссимиляции неразрывно связаны между собой и протекают одновременно.
^

Пороги энергетического обмена


Порог аэробного обмена (ПАО) - верхняя граница исключительно аэробной энергопродукции.
^ Порог анаэробного обмена (ПАНО) - граница, выше которой анаэробные процессы энергопродукции являются преобладающими.
Для выполнения физических нагрузок мышцы должны получать достаточное количество высокоэнергетичес- кого вещества (клеточного топлива). Таким веществом является активное соединение фосфора и нуклеотидов - аденозинтрифосфат (АТФ). Запасы АТФ должны постоянно пополняться извне, на это идет энергия расщепля- емых в процессе переваривания в желудочно-кишечном тракте белков, жиров и углеводов. В мышечной клет- ке существуют ссылка скрыта обеспечивающих достаточно надежное и длительное выпол- нение функций. Как соотносятся эти различные уровни ресинтеза АТФ в организме при конкретной мышечной деятельности?
^

Уровни энергетического обмена


Выделяют следующие пять энергетических уровней в организме:


^ Характеристика энергетических уровней

Энергетические уровни

Время max работы на уровне

Режим работы

Уровень использования запасов АТФ

2-3 с

анаэробный

Уровень использования креатинфосфата

20-30 с

анаэробный

Уровень анаэробного гликолиза

3600 с

анаэробный

Уровень окислительного фосфорилирования

длительный

аэробный

Миокиназный путь

используется редко и только в экстремальных условиях

?!
^

Уровень использования свободной АТФ


Запасы свободной АТФ в мышце незначительны, их хватает лишь на 2 - 3 секунды интенсивной мышечной работы. Поэтому необходимо постоянное и весьма интенсивное его пополнение.
^

Уровень использования креатинфосфата


Креатинкиназная реакция, названа по ферменту креатинкиназе, с помощью которого она осуществляется.
АТФ и креатин близко расположены в клетке друг к другу, как только уровень АТФ начинает снижаться, он превращается в АДФ (аденозиндифосфат).
На уровень возрастающего АДФ, сразу же реагирует креатинкиназа. Она отщепляет высокоэнергетическую молекулу неорганического фосфора от креатинфосфата (КФ) и передает ее на молекулу АДФ, который восста- навливается до АТФ, возмещая уровень израсходованного.
Таким образом, креатинкиназный путь (эффективность 1 молекула КФ - 1 молекула АТФ), не требует аэробно- го режима тренировки, не дает никаких побочных продуктов, может быть запущен моментально. Основной минус в том, что его хватает ненадолго.
^

Уровень анаэробного гликолиза


Под термином гликолиз понимают происходящее без участия кислорода (анаэробно) окисление глюкозы до молочной кислоты. Исходным субстратом гликолиза является глюкоза, она доставляется в мышцы кровью, или в результате распада в мышце гликогена. Глюкоза активируется соединяясь с фосфорной кислотой, модифици- руется и затем в результате несложных ферментативных процессов превращается в пировиноградную кислоту (ПВК). В анаэробных условиях, т.е. в условиях абсолютной или относительной недостаточности кислорода, ПВК окисляется до молочной кислоты. Таким образом, в условиях недостатка кислорода ресинтез АТФ осуще- ствляется в результате гликолиза с накоплением недоокисленных продуктов метаболизма, в частности молоч- ной кислоты (лактата). Интенсивность анаэробной нагрузки может составлять не более 60 минут. Количество молекул АТФ синтезируемых за один цикл 2 - 3 . Гликолиз хорош тем, что не требует повышенного снабжения организма кислородом. Кроме того, он обладает гораздо большим резервом, чем креатин-киназный путь ресинтеза АТФ. Однако,
  • во-первых он малоэффективен (всего три молекулы АТФ на молекулу глюкозы)
  • во-вторых запасы гликогена в организме хотя и велики, но не безграничны и легко могут быть исчерпаны
  • в-третьих, гликолиз способствует накоплению в организме лактата, что приводит к закислению среды и далеко не безразлично для функций организма
  • в-четвертых, "запуск" гликолиза требует некоторого времени, он не настолько быстрый как креатинкиназная реакция и полное его развертывание возможно только через 10-20 секунд.