Методика ознакомления младших школьников с нумерацией многозначных чисел и системой счисления > Технологическая схема введения понятия числа Заключение
Вид материала | Реферат |
Содержание2.2. Позиционные и непозиционные системы счисления. |
- Вопросы к гак по методике преподавания начального курса математики, 23.01kb.
- Экзаменационные вопросы по курсу "Методы программирования", 32.44kb.
- Вткс02. информационно-логические основы вычислительных машин функциональная и структурная, 701.73kb.
- Тема : Кодирование чисел. Системы счисления, 32.22kb.
- Исследование выпуклости функции. Точки перегиба. Асимптоты функций. Понятие об асимптотическом, 31.41kb.
- Методика использования дидактических игр на уроках математики для активизации познавательной, 25.3kb.
- Урок по математике в 4 классе тема: Нумерация многозначных чисел, Закрепление, 51.29kb.
- Счисления. Римская нумерация. Арифметические действия над натуральными числами. Степень, 88.12kb.
- Примерный перечень вопросов к зачету по дисциплине «Информатика» для студентов 1 курса, 19.65kb.
- Программа курса основы программирования дисциплина обязательная, привязанная к семестру., 76.11kb.
2.2. Позиционные и непозиционные системы счисления.
Самый простой счет – это счет двойками. В этом счете за основу взято число два. Две единицы образуют уже второй разряд – разряд двоек, две двойки – это третичный разряд – разряд четверток. Следующий разряд – это восьмерки и т. д.
Число в двоичной системе изображается только двумя цифрами – единицей и нулем. Единица второго разряда – это два. Единица третьего разряда – это четыре, так как 2x2=4, единица четвертого разряда – восемь, так как 2х2х2=8, пятого – 9х2=16 и т. д.
В двоичной системе число 101 – это не сто один. В этом числе последняя цифра – разряд единиц – один. Нуль показывает, что второго разряда, то есть двоек, нет. Первая в числе единица – это единица третьего разряда, т.е. четвертка, следовательно, 101 – это 4+0+1=5. А в числе 1110 по двоичной системе, единиц – нуль, то есть, их нет. Во втором разряде – одна двойка, в третьем разряде – одна четвертка, в четвертом – цифра1 означает, что в этом случае ее надо принять за 8.
Все число составит 8+4+2+0=14
В прошлом некоторые народы продолжительное время при счете применяли двоичную систему счисления. Например, в Австралии были племена, которые считали так: один – это «энэа», два – «петчевал», три – «петчевал-энэа», т.е. два и один, четыре – «петчевал-петчевал», (два и два).
Первоначально и в древнем Египте считали двойками, что подтверждают записи в более древних папирусах.
Счет двойками в наше время сыграл большую роль при создании электоронно-вычислительных машин. Все первые электронно-вычислительные машины работали на двоичной системе счета. Теперь в таких машинах используют не только двоичную, но и другие системы счисления, что позволяет увеличить скорость действия машин. Вычисления в двоичной системе счисления самые простые. Но они требуют длинных записей, на что тратиться много времени.
Пятеричная и десятеричная системы счисления.
Считать можно по-разному. Например, сосчитал до 5 – загни палец правой руки. Сосчитал еще пять предметов – загни второй палец той же руки и т. д. Когда все пальцы руки загнуты, то загибают один палец на левой руке, а пальцы правой руки разгибают. Дальше счет продолжают снова, загибая своей правой руки или другого человека. Пять согнутых пальцев правой руки означают 5х5=25, три загнутых пальца левой руки выражают число 25х3=75, пять пальцев той же руки означают число 25х5=125, такой способ счета называют пятеричным, так как в его основе лежит число пять.
Современная десятичная система счета сложилась несколько тысячелетий назад одновременно у многих народов. В основе этой системы оказалась десятка благодаря тому, что у человека на руках 10 пальцев, которыми при счете он постоянно пользовался. Однако некоторые народы в древности пользовались смешанной пятерично-десятнричной системой счисления. Примером, подверждающим это, служит римская нумерация. В римской нумерации имеются особые знаки: цифры, для обозначения пяти – V, десяти – Х, пятидесяти – L, ста – С, пятисот – D.
Двоичная и троичная системы счисления.
Особый интерес представляет двоичная система счисления. В ней используются только два знака для записи чисел, а именно цифры 0 и 1. Приводим таблицу чисел натурального ряда в двоичной системе счисления.
Десятеричная система счисления Двоичная система счисления
- 1
- 10
- 11
- 100
- 101
- 110
- 111
- 1000
- 1001
- 1010
- 1011
- 1100
В этой системе счисления совсем просто выполняются действия. Рассмотрим, например, сложение следующих чисел: 100101
10011
11101
101001
110011
___________
10110001
Как видим, эта операция выполняется очень легко. Так же легко выполняются остальные действия. Единственный недостаток этой системы – громоздкость записи чисел.
В современной вычислительной технике в устройствах автоматики и связи широко используется двоичная система счисления. Особая значимость двоичной системы счисления в информатике определяется тем, что внутренне представление любой информации в компьютере является двоичным, т.е. описываемым наборами только из двух знаков (0 и 1).
Конкретизирую описанный выше способ в случае перевода чисел из десятичной системы в двоичную. Целая и дробная части переводится порознь. Для перевода целой части (или простого целого числа) необходимо разделить ее на основание системы счисления и продолжать делить частные от деления до тех пор, пока частное не станет равным 0. значения получившихся остатков, взятые в обратной последовательности, образуют искомое двоичное число. Например:
25:2=12(1),
12:2=6(0),
6:2=3(0),
3:2=1(1),
1:2=0(1).
Таким образом, 25(10)=11001(2)
Для перевода дробной части (или числа, у которого «0» целых) надо умножить ее на 2. целая часть произведения будет первой цифрой числа в двоичной системе. Затем, отбрасывая у результата целую часть, вновь умножаем на 2 и т. д. заметим, что конечная десятичная дробь при этом вполне может стать бесконечной (периодической) двоичной. Например:
0,73х2=1,46 (целая часть 1),
0,46х2=0,92 (целая часть 0),
0,92х2=1,84 (целая часть 1),
0,84х2=1,68 (целая часть 1), и т. д.
В итоге: 0,73(10)=0,1011…(2)
Над числами, записанными в любой системе счисления, можно производить различные арифметические операции. Так, для сложения и умножения двоичных чисел необходимо использовать эти таблицы.
Таблицы сложения и умножения в двоичной системе.
Заметим, что при двоичном сложении 1+1 возникает перенос единицы в старший разряд – точь-в-точь как в десятичной арифметике:
Перевод чисел из десятичной системы счисления в восьмеричную производится (по аналогии с двоичной системой счисления) с помощью делений и умножений на 8. Например, переведем число 58,32(10)
58:8=7 (2 в остатке)
7:8=0 (7 в остатке)
0,32х8=2,56
0,56х8=4,48
0,48х8=3,84… Таким образом, 58,32(10)=72243…(8) (из конечной дроби в одной системе может получиться бесконечная дробь в другой).
Перевод из десятичной системы счисления в шестнадцатеричную производится аналогично.
С практикой точки зрения представляет интерес процедура преобразования двоичных, восьмеричных и шестнадцатеричных чисел. Для этого воспользуемся таблицей чисел от 0 до 15 (в десятичной системе счисления), представленных в других системах счисления.
Для перевода целого двоичного числа в восьмеричное необходимо разбить его справа налево на группы по3 цифры (самая левая группа может содержать менее трех двоичных цифр),а затем каждой группе поставить в соответствие ее восьмеричный эквивалент. Например:
11011001=11011001, т.е. 11011001(2) =331 (8)
Заметим, что группу из трех двоичных цифр часто называют «двоичной триадой».
Перевод целого двоичного числа в шестнадцатеричное производится путем разбиения данного числа на группы по 4 цифры – «двоичные тетрады»:
1100011011001=1100011011001, т.е. 1100011011001(2)=1809(16)
Для перевода дробных частей двоичных чисел в восьмеричную или шестнадцатеричную системы аналогичное разбиение на тирады или тетрады производится от точки вправо (с дополнением недостающих последних цифр нулями):
01100011101(2)=0,110001110100=0,6164(8),
01100011101(2)=0,110001110100=0,674(16)
Перевод восьмеричных (шестнадцатеричных) чисел в двоичные производится обратным путем – сопоставлением каждому знаку числа соответствующей тройки (четвертки) двоичных цифр.
Преобразования чисел из двоичной в восьмеричную и шестнадцатеричную системы столь просты (по сравнению с операциями между этими тремя системами и привычной нам десятичной) потому, что числа 8 и 16 являются целыми степенями числа два. Этой простотой и объясняется популярность восьмеричной и шестнадцатеричной систем в вычислительной технике и программировании. Это особенно верно применительно к налогообложению, где различие между налоговой системой (налоговым законодательством, налоговой политикой) и налоговым администрированием (институтом налоговой службы) провести не так просто, как в других областях экономической политики. Хорошее налоговое администрирование – это хорошая налоговая политика. Самая лучшая налоговая политика, которая «не работает», поскольку налоговое администрирование не способно провести ее в жизнь, - заслуживает низкой оценки. Какие бы реформы ни проводились в налоговом администрировании, важно всегда учитывать возможное влияние этих реформ на налоговую политику и на другие элементы фискальной системы. Налоговая система основывается на законодательстве, определяющем налоговую политику и гражданские правоотношения, и налоговом администрировании. [11;30]
Арифметические действия с числами в восьмеричной и шестнадцатеричной системах счисления выполняются по аналогии с двоичной и десятичной системами. Для примера, эта таблица иллюстрирует сложение и умножение восьмеричных чисел.
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
3 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12 |
4 | 4 | 5 | 6 | 7 | 10 | 11 | 12 | 13 |
5 | 5 | 6 | 7 | 10 | 11 | 12 | 13 | 14 |
6 | 6 | 7 | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
х | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 0 | 2 | 4 | 6 | 10 | 12 | 14 | 16 |
3 | 0 | 3 | 6 | 11 | 14 | 17 | 22 | 25 |
4 | 0 | 4 | 10 | 14 | 20 | 24 | 30 | 34 |
5 | 0 | 5 | 12 | 17 | 24 | 31 | 36 | 43 |
6 | 0 | 6 | 14 | 22 | 30 | 36 | 44 | 52 |
7 | 0 | 7 | 16 | 25 | 34 | 43 | 52 | 61 |
Есть еще один способ пе5ревода чисел из одной системы счисления в другую – метод вычитания степеней. В этом случае из числа последовательно вычитается максимально возможный коэффициент, меньший основания; этот коэффициент и является значащей цифрой числа в новой системе. Например, число 114(10): 114-26=114-64=50,
50-25=50-32=18
18-24=2
2-21=0
Таким образом, 1141(10)=1110010(2) 114-1х82=114-64=50
50-6х81=50-48=2
2-2х80=2-2=0
Итак: 114(10) =162(8)
Десятичная Соответствие чисел в различных системах счисления.
| Шестнадцатеричная | Восьмеричная | Двоичная |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 2 | 2 | 10 |
3 | 3 | 3 | 11 |
4 | 4 | 4 | 100 |
5 | 5 | 5 | 101 |
6 | 6 | 6 | 110 |
7 | 7 | 7 | 111 |
8 | 8 | 10 | 1000 |
9 | 9 | 11 | 1001 |
10 | А | 12 | 1010 |
11 | Б | 13 | 1011 |
12 | С | 14 | 1100 |
13 | Д | 15 | 1101 |
14 | Е | 16 | 1110 |
15 | F | 17 | 1111 |
Как уже отмечалось, для сложения умножения однозначных чисел в позиционных системах составляются соответствующие таблицы. Они используются как при вычитании и делении однозначных чисел, так и при действиях с многозначными числами.
Составим, например, таблицу сложения однозначных чисел в троичной системе счисления. Однозначные числа в ней – это 0,1,2. Число 3 записывается 103. Число 4(10) имеет вид 113, так как 410 =1х3+1=113.
Аналогичным образом находим запись и других чисел в троичной системе. Таблицу сложения удобно представить в таком виде, где на пересечении стоки и столбца стоит сумма.
х | 0 | 1 | 2 |
0 | 0 | 1 | 2 |
1 | 1 | 2 | 10 |
2 | 2 | 10 | 11 |
Используя эту таблицу, можно складывать любые числа в троичной системе счисления. Например, 12213 +1223 =21213, в то время как, выполнив сложение «столбиком», получаем: +1221
122
2120
Этой же таблицей можно пользоваться, выполняя вычитание чисел в троичной системе счисления: -2110
212
1121
Таблица умножения однозначных чисел в троичной системе вид:
Х | 0 | 1 | 2 |
0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 |
2 | 0 | 2 | 11 |
На основе этой таблицы и таблицы сложения выполняют умножение многозначных чисел. Найдём, например, произведение 122 х 22:
122
22
1021
1021
10231
Отметим, что сложение полученных неполных произведений выполняется в третичной системе счисления. Опираясь на эту таблицу, выполняют деление чисел, записанное в троичной системе счисления, например: 10011 12
12 122
111
101
101
101
- 10011 : 12 = 122
Из вышеуказанного известно, что римская система относится к непозиционным системам счисления. В этой системе счисления имеются знаки для узловых чисел: единица обозначается – I, пять – V, пятьдесят – L, сто – C, пятьсот – D, тысяча – М. Все остальные числа получаются при помощи двух арифметических операций: сложения и вычитания. Вычитание производится тогда, когда знак, соответствующий меньшему узловому числу, стоит перед знаком большего узлового числа. Например, IV – четыре, ХС – девяносто. Запишем несколько чисел в римской нумерации. 193 – это сто (С) плюс девяносто, т.е. сто без десяти (ХС), плюс три (III), следовательно, число 193 записывается как СХСIII.
564 – это пятьсот (D) плюс пятьдесят (L) плюс десять (Х) плюс четыре, т.е. пять без одного (IV). Следовательно, число 564 записывается DLXIV, а число 2708 – MMDCCVIII. Если число содержит несколько (немного) тысяч, то для его записи в римской нумерации пользуются повторением знака М. Вообще же числа четырех-, пяти-, и шестизначные записывались с помощью буквы m (от латинского слова mille – тысяча), слева от которой записывали тысячи, а справа – сотни, десятки, единицы. Так, запись CXXXIIImDCCCXLII является записью числа 133842.
В России доXVII в. В основном употреблялась славянская нумерация, более стройная и удобная, чем римская, но тоже непозиционная. В ней числа изображались буквами славянского алфавита, над которыми для отличия ставили особый знак – титло.
Естественно, что такие системы записи чисел, как римская и славянская, были удобнее, чем зарубки на бирках, поскольку позволяли записывать большие числа. Однако, выполнение действий над ними в таких системах было весьма сложным делом. Поэтому на смену им пришла десятеричная система счисления.