Шаталов Виктор Федорович "Эксперимент продолжается" М. Педагогика, 1989. 336 с.: ил. Вкниге обобщаются основные принципы и содержание разработанной под руководство
Вид материала | Руководство |
- Виктор Федорович Пивоваров, академик расхн, доктор с Х. наук, профессор. Лаборатория, 101.77kb.
- При разработке программы математического кружка учитывались основные принципы, которым, 162.33kb.
- Педагогика детства, 2991.26kb.
- Руководство по борьбе с насилием в семье, 126.99kb.
- Ю. А. Анисимова Учебно-методические материалы, 86.41kb.
- В. А. Шибайки кандидат экономических наук, доцент Саратовского государственного аграрного, 138.17kb.
- Бойко Виктор Сергеевич Йога. Скрытые аспекты практики, 4262.99kb.
- Мужицкий Владимир Федорович, д т. н. Федосенко Юрий Кириллович, д т. н. Артемьев Борис, 424.99kb.
- Книга и написана с целью помочь учителю овладеть новыми методическими приемами работы,, 457.93kb.
- Конституционная реформа в России (1989-1993г.), 376.36kb.
рядом становятся причинами тяжелейших трагедий. Пусть дети всегда знают и
помнят о том, что состоявшаяся судьба, достигнутая цель - это всегда
результат упорнейшего, непрерывного труда, наполненного и неудачами, и
разочарованиями, и непризнанием, и даже провалами.
Как же строится работа учащихся над задачами, примерами и различного
рода упражнениями? Брошюра, содержащая листы с опорными сигналами, включает
в себя и несколько плашек с отобранными из стабильного учебника
упражнениями. Это так называемое домашнее задание. Только оно не разбивается
на отдельные обязательные порции, а предлагается как поле для
самостоятельной деятельности. Некоторые из этих упражнений, будучи
образцами, решаются на уроке, клеточки с этими номерами закрашиваются сразу
в ведомости открытого учета решенных задач и в индивидуальных плашках. В
первых плашках, если иметь в виду математику, большую часть упражнений
ребята решают самостоятельно дома, а в классе - не более одного из пяти. В
последней плашке это соотношение резко меняется: половина всех упражнений
решается в классе, так как сложность их несравненно выше, чем в первых
плашках.
Тетради с решенными упражнениями сдаются на каждом уроке. Причем любой
ученик вправе выполнить столько, сколько он пожелает или успеет, учитывая
время, необходимое на подготовку к другим урокам. Поэтому никак не
поощряются те, кто стремится любой ценой опередить всех, решая ежедневно
десятки самых разнообразных упражнений. Их количество определяется
индивидуально, как и последовательность решения.
Саморегуляция и самоуправление
Именно эти термины характеризуют учебную работу на новой методической
основе. Полностью располагая своим внеурочным временем, ученик свободен в
выборе задач, он действует по своему усмотрению, привыкая планировать труд,
распределять силы и внимание так, чтобы выполнить намеченное. В самой по
себе регламентации деятельности учащихся ничего худого, казалось бы, нет, но
это было бы верным, если бы в каждом классе работала единая система учета
загруженности школьников. Увы, ее нет, и каждый учитель, в сущности,
поступает по собственному разумению. А разумение это работает только в одном
направлении - больше! Больше любой ценой! Больше, не считаясь с реальными
возрастными возможностями ребят. Разве, если положить руку на сердце,
кто-либо из читателей-педагогов хотя бы однажды, заканчивая урок, спросил:
- Прочитайте, пожалуйста, ребята, что вам задано на дом по всем учебным
предметам на следующий день, и скажите: сколько это страниц учебников и
сколько к ним нужно сделать упражнений?
А узнав о непомерно большом задании, добавил бы:
- Тогда по нашему учебному предмету на завтра учить ничего не нужно...
По положению, распределением рабочего времени школьников должны
заниматься заместители директоров школ по учебной работе, на деле им не до
этого. Вот и расцветает пышным и недобрым цветом то, что следует назвать
предметным эгоизмом.
Учебная нагрузка ребят контролируется лишь в начальных классах, где все
уроки ведет один учитель, а в средних и старших никто этим вопросом всерьез
не занимается.
Индивидуальная домашняя подготовка на основе саморегуляции позволяет
решить проблему учебной перегрузки детей. Если, например, по литературе
предстоит выполнить объемное задание, подготовиться к сочинению, не беда:
можно меньше времени уделить математике, а завтра больше поработать над
решением упражнений. Вот одна из причин, по которой в экспериментальных
классах никто и никогда не сетовал на непомерность заданий. Наоборот, мы
всегда напоминаем и детям и родителям:
- Никто никого не обязывает работать сверх меры. Помните и никогда не
забывайте о саморегуляции.
Как ни удивительно, но именно такая раскрепощенность учащихся резко
повышает их трудовую отдачу. Работая не за страх, а за совесть, они
опровергают все традиционные представления об их возрастных возможностях.
Учебников становится явно недостаточно, и в школьных сумках ребят получают
постоянную прописку самые разнообразные сборники задач для поступающих в
высшие учебные заведения, сборники олимпиадных задач, различного рода книги
с занимательными задачами и т. д. Достаточно сказать, что у каждого ученика
экспериментальных классов в 13-й школе было 10 сборников задач по
математике, а четвероклассники 5-й школы в 1986 г. решали упражнения из 5
разных сборников.
И числом и умением
Некоторое представление о масштабах практической работы учащихся в 13-й
школе может дать количественный и качественный анализ сводных ведомостей
решенных задач по математике за три года обучения в VIII-X классах.
Минимальное количество упражнений, выполненных одним из самых слабых
учеников класса, составило 1920, максимальное - 12000. Большая часть ребят
(30%+40%=70%) выполнила за это время от 8000 до 10 000 задач, причем
повышенной сложности. Критерием оценки могут служить олимпиадные задачи,
каждая из которых строго соотносится с другими по сложности. Так, за решение
простой задачи может быть начислен 1 балл, а за решение сложной - сразу 5
баллов. Средний коэффициент соотношения сложности задач дополнительных
сборников и стабильных учебников 2,5. Это значит, что худший ученик решил
4800 задач (1920x2,5), а самый лучший - 30 000 (12000x2,5). За эти же три
года в традиционных условиях худший ученик решает не более 600 задач, а
лучший - немногим более 11 000. И все же главное отличие экспериментальных
классов от обычных не столько в количестве решенных задач, сколько в
плотности результатов, отраженных криволинейными трапециями, расположенными
под графиками. Количество учащихся в экспериментальных классах, решивших
менее 8000 задач, только 30% (10%+ 20%). Остальные же 70% (см. пунктирный
график) превзошли в результативности работы самых лучших учеников (их, как
правило, не более 30%) обычных классов в несколько раз. Так сказать, и
числом и умением! Из всего этого следует естественный вывод: новая методика,
создавая благоприятные условия для развития творческих задатков всех детей,
оказывается наиболее результативной по отношению к учащимся, имеющим более
высокий исходный уровень мышления.
Подчеркнем еще раз: картины совмещенных графиков говорят о том, что от
70 до 80% ребят всего за три года поднимаются до уровня тех, кого принято
называть лучшими учащимися в обычных школах. Это подтвердили все контрольные
проверки. Развернувшаяся в последние годы массовая работа в четвертых
классах в значительной мере дала более высокие результаты, и теперь уже
можно с убежденностью говорить о возможном подъеме уровня подготовки 90%
всех учеников до той отметки, на которой сегодня мы привыкли видеть только
лучших. Следовательно, можно с уверенностью прогнозировать значительное
повышение интеллектуального потенциала будущих выпускников школ, перешедших
на новую методику обучения.
На прочной основе знаний
В курсе физики VI класса, изучаемого в течение одного года по
экспериментальным программам, 25 разделов. С интервалом не более одного
урока они следуют один за другим, и после каждого из них включаются все
новые и новые задачи. При этом ни на один день не прекращается работа с
задачами из разделов, изученных ранее. Курс физики необычайно сложен. Сложен
разноплановостью и взаимонезависимостью разделов. Сложен огромным
количеством обязательных сведений. Сложен самим уровнем изучения предмета.
Обеспечить прочные знания по физике можно только при условии разумно
организованного повторения, и не только теоретического материала, но и
циклически нарастающего по сложности решения задач, в процессе которого
ребята будут постоянно возвращаться к ранее изученным разделам на новых
уровнях их осмысления.
Даже от самого жаркого огня в камине знаний может остаться всего только
горстка холодной золы, если рядом пусть даже с самыми прилежными и
старательными ребятами не окажется заботливого истопника-педагога и
достаточного количества заготовленных впрок поленьев-задач. Предусматривая
нарастание сложности задачного материала, необходимо учитывать и законы
развития мышления подростков, и их психологическое состояние на протяжении
всего учебного года.
Простой расчет показывает, что, решая на каждом уроке по 2 задачи из
раздела "Давление", ученик одолеет все 16 задач этого раздела за 8 уроков,
т. е. (при 2 уроках в неделю) за один месяц. Но что останется в памяти от
изученного, если в последующие 4 года (от VII до X класса) к разделу
"Давление" не обращаться более никогда? В работе на новой методической
основе такого не может произойти, так как раздел "Давление" десятый по счету
и к началу его изучения каждый ученик уже решит 20 задач (по две из каждого
раздела), а спустя еще 4 урока - 30 задач. Выполняя ежедневно по 10 задач,
он никак не сможет решать по 2 задачи из каждого раздела к одному уроку. В
этом вся суть, и здесь особенно необходим направляющий совет учителя:
перейти на циклическое решение задач. Это значит, что к каждому уроку надо
решать задачи только из 5 последовательно идущих друг за другом разделов.
Сегодня из 5 разделов, завтра - из 5 следующих разделов и т. д. Уже к
середине второй четверти в активе у ребят будут 15 изученных разделов,
которые образуют 3 цикла по 5 разделов, а это значит, что к каждому циклу
учащиеся станут возвращаться раз в 10 дней. В дальнейшем промежутки между
циклами увеличатся д0 18 дней, но беды в этом уже не будет: глубина и
прочность знайки по материалу первых циклов достигают такого уровня, при
котором некоторое смещение акцента на задачи из новых разделов не ослабляет
практических навыков учащихся по ранее изученным разделам. Многократное
повторение идет не по кругу, а по спирали. И теперь впору вспомнить о
релейной работе, подводящей итог решению задач за весь учебный год. Вот и
получается, что задачи из каждого раздела находятся в поле активного
внимания учащихся на протяжении учебного года, а это уже само по
себе становится гарантом успешного изучения всего предмета.
Приглашение к эксперименту
Предположим, что учащиеся двух классов - обычного и экспериментального
- закончили изучение раздела "Архимедова сила. Плавание тел". Если теперь,
спустя 3-4 урока, провести в этих классах контрольную, то учащиеся обычного
класса, возможно, напишут ее значительно лучше чем ребята, обучающиеся по
новой методике. И это понятно: для учителя, работающего в традиционных
условиях, задачам из нового раздела уделяется особое внимание в ущерб всем
остальным. В экспериментальном же классе вокруг задач по новому разделу не
создается никакого ажиотажа. Они включаются в общий план работы, и после
прохождения раздела начинается неторопливая доводка навыков учащихся в
умении решать задачи этого типа - от простых до головоломных. Новая методика
начисто исключает какую бы то ни было штурмовщину, натаскивание,
нервозность. Ускоренное изучение теоретического материала оставляет много
времени для основательного решения задач, поиска и моделирования различных
вариантов оперирования теоретическими знаниями на практике.
Прошло два месяца. Если теперь без всякого предупреждения провести
снова контрольную по разделу "Архимедова сила. Плавание тел", то учащиеся
экспериментального класса напишут ее в несколько раз лучше, чем в обычном
классе. И наконец, если эту же работу провести в обычном IX или X классе, то
результаты ее окажутся не просто плохими - провальными. Каждый учитель и
каждый директор школы может убедиться в этом завтра же.
При работе в новых методических условиях знания и умения по всем
разделам курса физики нарастают от урока к уроку на протяжении всех лет
обучения, и в IX классе с контрольной по любому разделу, изученному в VI,
VII или VIII классе, справится каждый ученик. Подобные контрольные
проводились неоднократно, и о результатах их еще будет рассказано. Сейчас же
есть смысл вспомнить о другой проверочной работе.
Весной 1974 г. девятиклассники закончили программу средней школы по
математике. Только по математике, так как физикой они начали заниматься не с
VIII класса, как это было в наборе 1970 г., а только с IX. Кроме того, в
1974/75 учебном году во всех школах было введено изучение разделов высшей
математики. Имея в резерве целый учебный год, экспериментаторы решили за 3
месяца концентрированно изучить новую программу по высшей математике, с тем
чтобы в оставшиеся 6 месяцев учебного года уделить главное внимание физике и
вести обзорное повторение курса математики. При таком плане работы первые 3
месяца не велось никакого повторения курса элементарной математики,
завершенного еще в мае. И вдруг в конце октября из Москвы и из Киева
одновременно приехала большая группа работников министерства и
научно-исследовательских институтов АПН СССР для изучения нового дела. После
нескольких дней посещений уроков решено было провести сравнительную
контрольную. Но где найти спаринг-партнера для экспериментального IX класса,
который уже завершил изучение полного курса математики, а все
десятиклассники страны еще только заканчивали программу первой учебной
четверти? И все же интересно было узнать, что сохранилось в знаниях и
умениях учащихся, если с мая до ноября никто ничего не повторял и не решал
из курса IX класса. Контрольную пришлось давать без сопоставления
результатов - только в экспериментальном классе. Ребятам было объявлено:
итоги работы не будут влиять ни на четвертную, ни на годовую отметку. Можно
решать спокойно. Такое объявление было нелишним: члены комиссии предложили
каждому ученику на 2 учебных часа 23 задания! Теоретические вопросы, задачи
по алгебре и геометрии, часть которых была взята из письменных контрольных,
предлагавшихся на вступительных экзаменах в Московский физико-технический
институт в 1972 г. Упражнения охватывали всю программу средней школы:
логарифмы, прогрессии, уравнения, системы уравнений, тригонометрические
уравнения, логарифмические неравенства, графики, задачи по планиметрии и по
стереометрии. Каково же было удивление многочисленных участников этого
эксперимента, когда более половины учащихся выполнили от 15 до 20 заданий!
Общее мнение было единодушным: класс с контрольной справился блестяще.
Восхождение по спирали
После всего сказанного может остаться только одно сомнение: в учебнике
физики для VI класса всего только 49 задач по разделу "Архимедова сила", и
все они весьма простые. На каком же тогда материале отрабатываются
практические умения учащихся, если в последующие годы изучаются новые
разделы с задачами большей сложности? Кроме стабильного учебника есть еще
сборник задач группы минских авторов27. Таким образом
обеспечивается уровень знаний и навыков, необходимый для того, чтобы решать
задачи разной сложности и типов, в том числе комбинированные, основанные на
нескольких разделах физики одновременно. Кроме того, напомним, в VI классе
школьники заканчивают программу по математике VIII класса и их
математическая подготовка позволяет одолеть любую задачу из самых
разнообразных сборников по физике. Вопрос о лимите времени отпадает сам по
себе: весь курс физики без каких-либо затруднений укладывается в 380-400
уроков вместо 627, предусмотренных современными программами, и изучение
физики завершается не в X, а в IX классе. Тем самым создается резервный год
для выхода на такой уровень знаний, о котором вчера еще никто не мог и
помышлять.
При массовом переходе на новую методическую систему неизбежно должен
быть поставлен вопрос о дифференциации обучения и создании по каждому
учебному предмету, связанному с выполнением упражнений, сборников задач двух
концентров. Первый из них будет содержать обязательные задачи для всех
учащихся, вне зависимости от их склонностей. Второй - целенаправленные
задачи для учащихся, проявляющих способности и интерес к тем или иным
наукам.
Используя большое количество разнообразных сборников задач, учащиеся
неоднократно возвращаются к исходному, основополагающему теоретическому
материалу, поднимаясь тем самым на новые уровни его освоения. Это снова
напоминает восхождение по спирали. Например, в X классе, когда весь
теоретический курс математики уже был изучен, ребята работали в основном со
сборником задач по математике для конкурсных экзаменов во втузы. В этом
сборнике 16 глав. В школе на первом уроке (спаренном) кроме всех прочих
работ ребята решали 5 задач (группы Б и В) из 5 последовательно идущих одна
за другой глав: 2-й и 6-й (1-я не учитывается, так как решение примеров с
арифметическими действиями к тому времени уже было освоено полностью). На
втором уроке этого же цикла подбирались задачи из 7-11-й глав, на последнем
уроке цикла - из трех последних глав. Промежутки между циклами составляли
1-2 урока, на которых использовались другие сборники задач.
Как видим, в работе по развитию навыков решения задач высокой сложности
нет ни торопливости, ни искусственности. Все естественно, просто и надежно:
уже через несколько циклов ребята осваивают конкурсный сборник и начинают
делать первые попытки подступиться к задачам нового уровня сложности.
Однажды покоривший вершину всегда стремится подняться на еще более высокую и
недоступную. Любознательность и желание испытать себя свойственны каждому
человеку. Попробуйте воспротивиться неуемной потребности годовалого карапуза
в активной деятельности, и вы оставите эту пустую затею после первых же
попыток. Постигнув премудрость разгадывания ребусов, мы всегда и охотно
делаем это на протяжении всей нашей жизни. Обладая достаточным лексическим
запасом, мы никогда не пройдем мимо кроссворда, будь он в районной газете
или в журнале "Огонек". И так во всем. Выскажем, однако, одно соображение.
Мы с удовольствием и увлечением разгадываем, например, кроссворды, потому
что это для нас отдых, но если бы в каком-либо учреждении существовала
должность разгадывателя кроссвордов, отношение к этому виду деятельности,
очевидно, было бы совершенно иным. В условиях традиционного обучения никто и
никогда не ставил вопрос о том, является ли решение задач учащимися во
внеурочное время трудом или отдыхом, обязательным или свободно выбранным
занятием. Если речь вести о традиционных формах работы, то задачи,
рассчитанные на "среднего ученика", неинтересны и мало что дают, как уже
было показано, большей части ребят. Стало быть это труд, но безрадостный и
тягостный.
Солнцем полна голова!
Иное дело, когда успех обеспечен фундаментальной предварительной
подготовкой и нет страха даже перед самой сложной задачей, а значит, нужны
лишь воля и упорство, чтобы прийти к желаемому результату. Иное дело, когда
радость победы разделит с тобой старший товарищ - твой консультант. Иное
дело, когда о твоей победе заявит во всеуслышание ведомость открытого учета
решенных задач и никто никогда не сможет обвинить в зазнайстве или
бахвальстве. Для бравады или бахвальства просто нет оснований. Голубые
ручейки строчек ведомости, обгоняя друг друга, не позволяют остановиться на
месте, отстать: идет движение вперед фронтом, лавиной. Перед кем тут
важничать? А случится сбой, она же, эта самая ведомость, немедленно сообщит
об этом, и сигнал тревоги включит в работу такое действенное средство помощи
из методического арсенала, как урок открытых задач. Ведь на этом уроке
ученик имеет право обратиться к учителю с просьбой помочь ему в решении
любой затрудняющей его задачи. Каждый урок открытых задач ребята
воспринимают как маленький праздник, после которого солнцем полна голова!