Предупреждение. Спасение. Помощь
Вид материала | Реферат |
- Целью религии является благо, спасение, блаженство человека, 640.62kb.
- Тема: Первая медицинская помощь при поражении техническими жидкостями, электротоком, 234.91kb.
- Реферат жизнь пророка исаии, 85.7kb.
- Инструкция № о 009 12 по оказанию первой доврачебной неотложной помощи подлинник контролируемая, 454.17kb.
- Отделение (группа) профилактики пожаров пч тгу фгку «5 отряд фпс по Томской области», 215.53kb.
- Полетаева Ольга Степановна. 2012 План I. Введение. А) актуальность проблемы Б) историография, 408.26kb.
- О т ч ё т о работе учебно-тренировочных сборов (утс) Федерации альпинизма России (фар), 70.62kb.
- Конец начало года традиционно сопровождается подведением итогов и робкими попытками, 1204.29kb.
- Николай Федорович Федоров: спасение как философия "общего дела" По материалам доклад, 367.54kb.
- Обжалование решений, действий или бездействия работников, 21.43kb.
Литература 1. Послание Президента Российской Федерации Д.А. Медведев Федеральному собранию. // Гарант. Информационно – правовой портал. ссылка скрыта 2. Савченко Т. Н., Головина Г. М. Субъективное качество жизни: подходы, методы оценки, прикладные исследования. – М.: Изд-во «Институт психологии РАН», 2006. – 170с. 3. См.: Кондратьев Н. Д. Мировое хозяйство и его конъюнктуры во время и после войны. – М., 1922, он же. Большие циклы конъюнктуры. – М., 1925. 4. Глазьев С.Ю. Теория долгосрочного экономического развития. – М.: ВлаДар, 1993. А.Х. Созранов, канд. воен. наук, участник войны во Вьетнаме ФГОУ ВПО «Академия гражданской защиты МЧС России» СКРЫТАЯ ФОРМА ГОСУДАРСТВЕННОГО ТЕРРОРА КАК ЧРЕЗВЫЧАЙНАЯ СИТУАЦИЯ С ОТДАЛЁННЫМИ ПОСЛЕДСТВИЯМИ Государственный терроризм (ГТ) в настоящее время не имеет чёткого и однозначного определения. Есть смысл считать ГТ применение средств (не только оружия) массового поражения (СМП) государством против населения другого государства без официального объявления войны. Давний интерес военных к использованию управляемых геофизических процессов в литосфере, гидросфере, атмосфере и околоземном космическом пространстве вызван следующими обстоятельствами: во-первых, активные воздействия на природные процессы позволяют создать простейшие и наиболее экономичные СМП, которые дадут результаты, оставляющие далеко позади все виды оружия массового поражения; во-вторых, их применение позволит снизить отрицательное влияние природных условий на ведение боевых действий своими силами и изменить ход естественных процессов для нанесения ущерба (поражения) войскам или мирному населению противостоящей стороны, дезорганизации и подрыва ее экономики, психологического воздействия и созданий условий, затрудняющих или делающих невозможным не только ведение ими боевых действий, но и нормальную жизнедеятельность; в-третьих, природные условия обладают возможностью скрытного проведения воздействия на них дистанционно на значительных расстояниях от места проявления, что дает определенные возможности для ведения тайной экологической войны; в-четвертых, страны, в которых технология активных воздействий на среду в военных целях достаточно развита, могут осуществлять политику «экологического шантажа» по отношению к странам, где такие технологии не разрабатываются и не создаются средства контроля и противодействия. Применение метеорологического оружия сегодня уже не является гипотетической возможностью. Элементы метеорологической войны были опробованы во время локальных войн в Индокитае (Камбоджа, Лаос), в Ираке, в Югославии и Афганистане. Метеорологическое оружие как СМП применялось США во время войны во Вьетнаме, что также можно отнести к скрытому виду ГТ. Программа воздействия на облака во время войны в Индокитае выполнялась в течение семи лет. Искусственная трансформация свойств атмосферы в военных целях непрерывно нарастала. Так в арсенале средств войны появляется новый термин – «метеорологическая война». Именно США взяли на вооружение особо опасные явления природы. Решение об использовании искусственно вызванного дождя в военных целях было принято высшим американским командованием, с целью остановить наступление партизан. Тогда с помощью рассеивания йодистого серебра и йодистого свинца в дождевых облаках провоцировались проливные дожди, затрудняющие перемещение боевой техники и войск, затопление значительных территорий, ухудшающие условия существования населения. В довершение всего объектом многочисленных атак с воздуха стала система защитных дамб вдоль рек и морского побережья Северного Вьетнама с целью вызвать массовые наводнения в сезон дождей. С целью вызвать наводнения в низинных районах Северного Вьетнама и создания ЧС в рамках операции «Голубой Нил» США 177 раз преднамеренно бомбили и обстреливали гидротехнические и ирригационные сооружения. Действия американской авиации привели к существенному изменению условий жизнедеятельности населения и боевого применения войск оборонительного характера. За весь оперативный период было совершено более 2600 самолетовылетов с целью искусственного вызывания дождя для затруднения передвижения войск. Полученные во Вьетнаме результаты ведения метеорологической войны позволили США применить «погодную» войну на Кубе – засев облаков с целью создания засухи в 1970 году. В последние годы войны во Вьетнаме испытывались химические соединения, вызывающие дождь с кислотной реакцией, которые оказывали существенное воздействие на ракеты и радиолокационное оборудование, используемое для наведения ракет класса «земля-воздух». Массированное применение гербицидов и дефолиантов (операция "Рэни хэнд") создавала ЧС на огромной территории Вьетнама, что подрывало систему жизнеобеспечения в обширном регионе. Химические вещества применялись как СМП гражданского населения. Американцы начали заливать джунгли так называемым «оранж-коктейлем» (ядохимикатами), уничтожая всё живое, включая растительность. Особенно активно «заливались» дефолиантами и гербицидами районы базирования «Вьетконга» и «тропа Хо Ши Мина», включая районы Лаоса и Камбоджи. За время войны на землю Вьетнама сброшено 94 тысяч тонн гербицидов и 8 тысяч тонн отравляющих веществ, прошли испытания 15 различных химических рецептур для уничтожения посевов и растительности. Уничтожено 25 тыс. км2 лесных массивов (11 % территории), потеряно более 20 млн. м3 деловой древесины. Пострадало от 40 до 100 % посевов бананов, риса, сладкого картофеля, помидоров, 70 % кокосовых плантаций, поражено 60 % (около 4 млн. га) джунглей и 30 %(более 100 000 га) равнинных лесов, погибли почти все плантации каучуконосов. Общая площадь подвергнутая воздействую химикатами составила около 50 тыс. км2. Журнал «Сайентифик америкэн» писал: «Американская авиация с 1965 по 1972 годы сбросила на Индокитай 13 миллионов тонн бомб (по количеству высвобожденной энергии это равно 450 атомным бомбам типа той, которая взорвалась над Хиросимой)». Для сравнения: все воюющие страны за весь период второй Мировой войны сбросили около 2,3 млн. тонн бомб, т.е. в 6 раз меньше и с гораздо меньшим эффектом поражения. В большом количестве применялся напалм, один килограмм напалма полностью уничтожал все живое на площади 6 м2, земля превращалась в окалину. В ходе боевых действий во Вьетнаме, впервые в истории войн, объектом поражения стали не только люди, но и среда их обитания, леса, сельскохозяйственные угодья, гидротехнические сооружения. США в Индокитае вели широкомасштабную экологическую войну, испытывали новейшее оружие, основанное на новых физических принципах, создавая сложные чрезвычайные ситуации на огромных территориях. По мнению американских военных специалистов, война во Вьетнаме ознаменовала начало нового этапа – войн, основанных на применении сверхсложного высокоточного и метеорологического оружия. Одним из направлений работ по активному воздействию на метеорологические процессы и явления, которому за рубежом, прежде всего в США, уделяется пристальное внимание, является изучение возможности модифицирования тропических циклонов в военных целях по программе "Stormfury", что в переводе означает "Разъярённый шторм". Тропические циклоны на современном этапе – объект пристального внимания и изучения ученых потому, что тайфуны, обладая огромной энергией, наносят значительный ущерб экономике различных государств, приводя к человеческим жертвам, а также затрудняют действия кораблей военного и гражданского назначения. В ходе антитеррористической операции в Афганистане США широко применяли самое современное высокоточное оружие, в том числе и специальные шеститонные бомбы для поражения объектов находящихся глубоко в горах. По мнению некоторых ученых, катастрофическое землетрясение на севере Афганистана и в государствах Средней Азии, создавшее ЧС военного характера на огромных территориях, было спровоцировано именно этими бомбардировками. Анализ показывает, что в современных войнах и военных конфликтах всё чаще инициируются ЧС военного характера, которые негативно воздействуют на все стороны жизнедеятельности населения. Например, в период военных действий против Ирака (1991, 1998 годах) были преднамеренно разрушены на территории Ирака и территории Кувейта 80 % предприятий нефтяной промышленности, ряд нефтепромыслов, склады хранения нефтепродуктов, подожжены десятки нефтескважин. Во время войны в море было вылито более 11 млн. баррелей нефти (1,75 млн. т.) Нефтяное пятно разлилось на 140 км, создав катастрофическое ЧС на огромной территории Персидского залива в виде экологической катастрофы. Во время первого периода военной операции против Югославии только высокоточными крылатыми ракетами воздушного и морского базирования была полностью (100 %) разрушена нефтеперерабатывающая промышленность, 40 % нефтехранилищ. В начале июня 1999 г. в устье реки Дунай находилось нефтяное пятно, размеры которого составляли 400 м в ширину и более 15 км в длину. В результате воздушных ударов по Югославии имело место несколько десятков инцидентов на химически-опасных объектах, связанных с утечкой чрезвычайно ядовитых веществ, что потребовало срочной эвакуации из опасных зон более 70 тысяч человек. В концепции национальной безопасности Российской Федерации особое внимание уделяется своевременному обнаружению угроз и определению их источников, а также организации системы подготовки и принятия упреждающих решений по защите национальных интересов страны. К их числу безусловно должны быть отнесены более глубокие и серьёзные научно-исследовательские и опытно-конструкторские работы в области использования глобальных геофизических искусственных возмущений в качестве инструмента ГТ, а также включение этих вопросов в соответствующие учебные программы. С.В. Субачев, канд. техн. наук, И.Н. Карькин, канд. физ.-мат. наук ФГОУ ВПО «Уральский институт государственной противопожарной службы МЧС России» ВАЛИДАЦИЯ КОМПЬЮТЕРНОЙ ПРОГРАММЫ «СИТИС: ВИМ» МОДЕЛИРОВАНИЯ ПОЖАРА В ЗДАНИЯХ Для расчета величины индивидуального пожарного риска зданий и сооружений общественного назначения фирмой «СИТИС» разработан комплекс необходимых компьютерных программ: программа «СИТИС: Флоутек» – предназначена для определения времени эвакуации людей из зданий и сооружений; программы «СИТИС: Блок» и «СИТИС: ВИМ» – предназначены для моделирования развития пожаров в зданиях и сооружениях и определения времени блокирования путей эвакуации опасными факторами пожара с использованием зонной модели пожара на основе расчётного модуля CFAST (Блок) и вероятностной интегральной модели пожара (ВИМ), разработанной в Уральском институте Государственной противопожарной службы МЧС России; программа «СИТИС: Спринт» – предназначена для анализа результатов расчёта множества сценариев развития пожара и эвакуации людей и определения индивидуального пожарного риска на основе этих данных в соответствии с утверждённой методикой. Более подробную информацию о назначении, области применения и математических моделях, используемых в программах можно ознакомиться в документации к этим программам, а в данной работе мы хотим представить результаты валидационных экспериментов программы «СИТИС: ВИМ». Вероятностная интегральная модель пожара в здании разработана относительно недавно, точнее сказать, объединение известной интегральной модели пожара и новой вероятностной модели распространения пожара по площади, и сравнение результатов моделирования с данными реальных (натурных) экспериментов до настоящего времени не проводилось. Для сравнения мы взяли результаты различных натурных экспериментов, проводимых научно-исследовательскими институтами и лабораториями США, которые приведены в документации по валидации полевой модели FDS (Fire Dynamics Simulator). Были отобраны те эксперименты, которые входят в область определения интегральной модели пожара. Необходимо отметить, что под термином «валидация» («validation») обычно понимают процесс определения правильности допущений и основных уравнений модели, процесс определения того, насколько метод расчёта (моделирование) является точным отражением реального мира. Но кроме этого мы, как разработчики модели и соответствующей программы, включаем в это понятие ещё и процесс корректировки модели с целью построения алгоритмов, позволяющих получить максимально достоверные результаты. Первую такую корректировку мы произвели после сравнения результатов моделирования с результатами экспериментов под наименованием «NBS_Multi-Room», которые были проведены Национальным бюро стандартов (ныне Национальный институт стандартов и технологий) США. Экспериментальная инсталляция состояла из двух помещений, соединенных между собой коридором, имеющим один выход наружу. Источник тепловыделения (газовая горелка) мощностью 100 кВт, располагался в дальнем от выхода помещении. Замер температуры производился с помощью нескольких шлейфов термопар (по 10 шт. равномерно распределенных по высоте в каждом). Среднеобъёмное значение температуры мы определяли путем интегрирования показаний термопар в шлейфе по высоте. По первым результатам моделирования стало понятно, что методика расчёта теплообмена требует уточнения. По упрощенной методике, предложенной М.П. Башкирцевым и ранее используемой в интегральной модели, температура стен определялась только исходя из температуры газовой среды. Это приводило к быстрой стабилизации параметров пожара и стационарному режиму горения (рис. 1, VIM_old). Поэтому нами была реализована методика расчёта температуры ограждающих конструкций с учетом их постепенного прогрева. С увеличением температуры стен теплоотдача в них постепенно уменьшается, доля энергии, расходуемой на нагрев воздуха, увеличивается, и его температура возрастает (постепенно, в течение всего времени нагрева конструкций). За основу расчёта конвективного теплообмена была взята методика, описанная в главе 3.4.5 технического руководства двухзонной модели пожара CFAST с учётом отвода тепла в пол, стены и потолок. При этом результаты моделирования качественно стали намного более схожими с экспериментальными данными, а в количественном отношении сходимость результатов стала лучше при увеличении коэффициента пропускания «виртуальных проёмов» в местах соединений частей, на которые разбит коридор в соответствии с методикой, в 2 раза (рис. 1, VIM_new). Рис 1. Среднеобъёмная температура воздуха в помещении очага пожара при упрощенной (VIM_old) и уточнённой (VIM_new) методике расчёта теплообмена Кроме этого нами была проведена большая работа по сравнению результатов моделирования с рядом других экспериментов («ATF_Corridors», «NIST_NRC», «WTC_Spray_Burner» и др.), однако описать их в рамках данной публикации не представляется возможным. Мы лишь ограничимся краткими выводами и озвучим направления дальнейшей работы по валидации интегральной модели на основе этих исследований. 1. В результате сравнения ряда экспериментальных данных выявлена необходимость увеличения коэффициента пропускания виртуальных проёмов в 2 раза. Эти «проёмы» должны пропускать воздушные потоки с меньшим сопротивлением, чем дверные или оконные проёмы, так как в них не наблюдается завихрение воздуха. Воздух по длине коридора распространяется равномерным, ламинарным потоком, и большое сопротивление излишне. 2. Необходимо уточнить тепловые характеристики различных строительных материалов, необходимые для расчёта теплообмена конвекцией, а также добавить расчёт теплообмена излучением, так как в случаях с интенсивным пламенным горением (например, в эксперименте «WTC_Spray_Burner» происходило горение газовых струй мощностью 2МВт) интегральная модель даёт большую погрешность. 3. Необходимо разработать и реализовать алгоритмы расчёта газообмена в горизонтальных (междуэтажных) проёмах не только за счёт разности давлений, но и за счёт разности температур воздуха. Более подробную информацию о валидационных экспериментах можно будет получить в готовящемся к выпуску руководстве по валидации ВИМ. Г.С. Ракитина, С.И. Долгов ООО «Газпром ВНИИГАЗ» МЕТОДОЛОГИЯ ФОРМИРОВАНИЯ ПЕРЕЧНЯ КРИТИЧЕСКИ ВАЖНЫХ ОБЪЕКТОВ ДЛЯ БОЛЬШИХ СИСТЕМ ЭНЕРГЕТИКИ Эскалация опасностей природного, техногенного и диверсионно-террористического характера делает актуальным вопрос превентивных мер защиты жизненно важных объектов для жизнеобеспечения населения и устойчивого функционирования экономики. Большинство предлагаемых методик оценки народно хозяйственной значимости объектов экономики базируются на сравнении ряда статических показателей: стоимость основных фондов, объем выпуска продукции, численность работающих, прогнозируемое число пострадавших и погибших при возникновении аварии на объекте. Для больших систем энергетики, таких как Единая система газоснабжения России (ЕСГ), такой подход не применим. Непрерывность и неразрывность процесса газоснабжения от газового промысла до потребителя, разветвленность и наличие кольцевых маршрутов в газотранспортной сети (ГТС), позволяющие диверсифицировать потки газа, наличие территориально рассредоточенного резерва газа в подземных хранилищах, а также наличие запаса газа в трубах – делают невозможным оценить значимость отдельных объектов ЕСГ или участков ГТС путем простого сравнения технологических или эксплуатационных характеристик этих объектов. Критически важными для ЕСГ являются такие объекты и участки ГТС, выход из стоя которых, не смотря на все компенсационные возможности системы, приведет к резкому снижению объемов поставок газа потребителям, а при одновременном выходе из строя этих объектов (или чисти из них) может привести к расчленение ЕСГ на отдельные локальные подсистемы. Для выявления в составе ЕСГ объектов, критически важных для устойчивого и непрерывного газоснабжения объектов экономики и коммунально-бытового сектора, необходимо использование потоковых алгоритмов, позволяющих в наибольшей мере учесть особенности ЕСГ, как большой организационно- производственной системы, функционирующей в едином согласованном и непрерывном технологическом режиме и обладающей сложной внутренней топологией сети. Решение задачи по выявлению критически важных объектов ЕСГ осуществляется в несколько этапов. Разрабатывается потоковая модель ЕСГ, представляющая собой граф [1]. Ребрам графа ставятся в соответствие агрегированные участки газотранспортных коридоров между компрессорными станциями (КС), объектам добычи и подземного хранения газа. Узлы графа соответствуют компрессорным станциям КС, точкам ветвления ГТС и потребителям газа. Нарушение технологических циклов при снижении или прекращении поставок газа промышленным потребителям разных отраслей и разных производств имеет разные масштабы последствий (от малозаметных до фатальных). При распределении газа в условиях дефицита газоснабжения это должно учитываться моделью [2]. С этой целью с использованием методологии причинно-следственного анализа на базе территориально-отраслевой структуры газопотребления разрабатывается ранговая модель потребителей газа, которая интегрируется с потоковой моделью [3]. Далее в соответствии с методологией теории графов осуществляется поиск минимальных разрезов в графе, моделирующем ЕСГ. По результатам поиска формируется предварительный перечень объектов ЕСГ – кандидатов на включение в перечень критически важных объектов. Для объектов предварительного перечня составляется набор возможных сценариев снижения производительности объектов и для этих сценариев на потоковой модели проводятся оценки объемов недопоставок газа. Объекты ЕСГ, снижение производительности которых приводит к существенному (более 50 %) снижению поставок газа на экспорт или более, чем в два Субъекта Федерации, включаются в перечень критически важных объектов. Данная методология ориентирована в первую очередь на объекты нарушение работы, которых приводит только к снижению поставок газа и не представляющие химической и радиационной опасности для населения и территорий. Литература 1. Харари Ф. Теория графов / (пер. с англ. В.П. Козырева) – М.: Издательство «Мир», 1973. 2. Яковлев Е.И. Казак А.С., Брянских В.Е. и др. Методика расчета сложных газотранспортных систем / Мингазпром, ВПО Тюменгазпром. – М.: МИНХ и ГП, 1982. – 72 с. 4. Антонов Г.Н., Черкесов Г.Н., Криворуцкий Л.Д. и др. Методы и модели исследования живучести систем энергетики / Новосибирск: Наука. Сиб. Отд-ние, 1990. – 285 с. 5. Карасевич А.М. и др. Модели и методы разработки стратегии развития Единой системы газоснабжения. Обзорн. инф. / М.: ООО «ИРЦ Газпром», 2006. – 100 с. Ю.Н. Тарабаев, канд. воен. наук, доц. ФГОУ ВПО «Академия гражданской защиты МЧС России» К ПРОБЛЕМЕ СОВЕРШЕНСТВОВАНИЯ СИСТЕМЫ ГРАЖДАНСКОЙ ЗАЩИТЫ В РОССИЙСКОЙ ФЕДЕРАЦИИ Две параллельные системы защиты населения и территорий со сходными целями и функциями, существующие до настоящего времени в России (РСЧС и ГО), действующие в мирное и в военное время. За последнее десятилетие наибольшее развитие получила РСЧС в силу вполне объективных причин: именно специалисты различных профилей этой системы принимали участие в ликвидации многочисленных ЧС природного, техногенного и военного характера. Применение же сил ГО, в силу определенной специфики, было достаточно ограничено (в основном привлекались войска ГО, так как привлечение других сил ГО связано с призывом требуемых специалистов через военкоматы, что в современных экономических условиях достаточно затруднительно). Поэтому достаточно остро встал и сегодня обсуждается на всех уровнях управления вопрос об объединении этих двух систем в единую систему гражданской защиты. Причем теоретическая основа такого объединения сегодня в основном разработана, так как проблема была сформулирована еще в конце 90-х годов прошлого века. Основными предпосылками, по которым возможна интеграция РСЧС и гражданской обороны и создание РСГЗ, являются: сходство воздействия на людей и объекты экономики и инфраструктуры поражающих факторов опасных природных явлений, аварий, катастроф и применяемого оружия; единство целевых функций систем на мирное и военное время (предотвращение бедствий, снижение возможных потерь и ущерба от них, ликвидация их последствий); сходство задач мирного и военного времени, обусловленных единством целевых функций; возможность решения задач мирного и военного времени практически одними и теми же органами управления, силами и средствами; сходство методологии и организации наблюдения, контроля, оценки обстановки и ликвидации последствий различных воздействий в мирное и военное время. Создание РСГЗ позволит: создать по возможности единое нормативно-правовое, организационное, информационное и методическое поле по вопросам организации гражданской защиты на всей территории страны, выработать единую идеологию в области гражданской защиты; иметь единые органы управления, системы связи и оповещения, силы и средства на мирное и военное время (это обеспечит более качественную заблаговременную подготовку к ведению гражданской защиты в военное время и, при необходимости, плавный переход системы с мирного на военное время, а также даст определенную экономию средств на содержание (функционирование) системы; сосредоточить усилия федеральных и территориальных сил и средств РСЧС и гражданской обороны на решении совместных задач, сформировать единые оперативно-технические (тактико-технические) требования по созданию (модернизации) различных технических, в том числе автоматизированных систем и средств для решения задач гражданской защиты. В состав сил РСГЗ могут войти: спасательные воинские формирования МЧС России; аварийно-спасательные службы и формирования федеральных органов исполнительной власти, органов исполнительной власти субъектов Российской Федерации, органов местного самоуправления, организаций и общественных объединений; подразделения ФПС; военизированные горноспасательные части; специализированные формирования, создаваемые на военное время. Для решения задач гражданской защиты могут создаваться и использоваться следующие резервы и запасы: резервный фонд правительства РФ по предупреждению и ликвидации чрезвычайных ситуаций; запасы материальных ценностей для обеспечения неотложных работ по ликвидации чрезвычайных ситуаций, находящиеся в составе государственного материального резерва; единые резервы финансовых и материальных ресурсов федеральных органов исполнительной власти на мирное и военное время; единые резервы финансовых и материально-технических ресурсов субъектов РФ, органов местного самоуправления, организаций и объектов на мирное и военное время. Таким образом, создание единой Российской системы гражданской защиты позволит в целом повысить ее эффективность за счет исключения дублирующих функций, повышения уровня квалификации и опыта специалистов, меньших затрат на содержание и функционирование системы, повышения оперативности реагирования на ЧС различного характера, комплексного применения при необходимости всех имеющихся сил и средств. А.П. Токарев, А.А. Жирков ФГОУ ВПО «Академия гражданской защиты МЧС России» |