Увеличение оптическое
Вид материала | Документы |
- Оптическое оборудование, 171.18kb.
- Хованскова Инна Александровна, 37.43kb.
- Полиграфический словарь, 499.28kb.
- Увеличение продаж – возможно ли это сейчас?, 24.11kb.
- Оптическое оборудование, 440.32kb.
- Машиностроение, 219.74kb.
- Кроэкономической ситуации стало сохранение и увеличение денежных сбережений населения,, 61.54kb.
- Патофизиология регионарного кровообращения и микроциркуляции, 124.19kb.
- Увеличение пенсионного возраста для женщин, 218.59kb.
- Федеральная целевая программа «Жилище» на 2002-2010 годы и входящие в ее состав подпрограммы, 116.2kb.
Рис. 1. На отклонённую ч-цу 1, находящуюся в магн. поле бочкообразной формы, создаваемом полюсными наконечниками 2, действует сила F, имеющая помимо радиальной составляющей FR аксиальную составляющую Fz, фокусирующую ч-цу по вертикали.
(рис. 1). Изменение поля по радиусу характеризуют т. н. показателем
спада n=-д(lnB)/д(lnR) . Т. о., для обеспечения фокусировки в аксиальном направлении необходимо выполнение условия n>0, т. е. убывания поля с увеличением радиуса. Движение в радиальном направлении определяется соотношением между силой действия магн. поля eBv/c и центростремит. силой mv2/R, соответствующей радиусу R. Для устойчивости в радиальном направлении нужно, чтобы сила F=eBv/c убывала медленнее, чем mv2/R, т. е. чтобы магн. поле убывало медленнее, чем 1/R, что сводится к условию n<1. Для одноврем. устойчивости в радиальном и аксиальном направлениях должно выполняться условие:
0<n<1. (5)
При этом ч-цы будут совершать около равновесной орбиты колебания (бетатронные колебания) с частотами
r =(1-n); z=n, (6)
меньшими частоты обращения . Фокусирующие силы, определяющие эти частоты, ограничены условием (5) для п. Такая фокусировка наз. однородной или слабой.
Чтобы усилить аксиальную фокусировку, необходимо резко спадающее по радиусу поле (n<<1). Напротив, для усиления фокусировки по радиусу необходимо резко возрастающее по радиусу поле (n<<-1). Эти требования одновременно невыполнимы, но их можно реализовать поочерёдно. На этом основан принцип з н а к о п е-
792
р е м е н н о й, или сильной фокусировки. Вся орбита разбивается на большое число одинаковых периодов, в к-рых устанавливаются магниты, сильно фокусирующие попеременно то в радиальном, то в аксиальном направлении. При определённых соотношениях между параметрами такая магн. система может обеспечить сильную фокусировку по обоим направлениям. Физически это объясняется тем, что в фокусирующих магнитах ч-ца оказывается дальше от неравновесного положения, чем в дефокусирующих, так что действие фокусирующих магнитов сильнее. Усиление фокусировки приводит к уменьшению амплитуды колебаний ч-ц под действием разл. раскачивающих факторов, что позволяет уменьшить поперечные размеры вакуумной камеры и магнитов. Однако из-за большой частоты колебаний ч-ц появляются многочисл. резонансы: при определ. соотношениях между r и z возникает резонансная раскачка колебаний. Это заставляет предъявлять жёсткие требования к точности изготовления и расстановки магнитов.
При малых энергиях наряду с магн. фокусировкой применяется электрич. фокусировка с помощью ускоряющего электрич. поля. В обычном ускоряющем зазоре электрич. поле «провисает» внутрь зазора (рис. 2).
Рис. 2. Распределение электрич. поля в ускоряющем зазоре между электродами А и В; Fx и Fy— продольная и поперечная составляющие силы F, действующей на ч-цу.
Поэтому в первой части зазора оно прижимает ч-цу к оси зазора (фокусирует), а во второй — отклоняет от оси (дефокусирует). Поскольку ч-ца, ускоряясь, пролетает вторую часть зазора быстрее, чем первую, то фокусирующее действие оказывается преобладающим. Т. н. электростатич. фокусировка, основанная на изменении скорости ч-ц (см. Электронная оптика), эффективна лишь при малых скоростях ч-ц, поэтому её применение в У. ограничено. Но при переменном во времени электрич. поле имеет место и электродинамич. фокусировка, если во время пролёта ч-цей зазора поле убывает. Наоборот, если ч-ца пролетает зазор в момент нарастания поля, то зазор оказывает дефокусирующее действие. К электрич. полям также применим принцип знакопеременной фокусировки. Используя электроды сложной формы, можно попеременно фокусировать и дефокусировать ч-цы или же можно менять от зазора к зазору знак равновесной фазы (в последнем случае фазировка тоже получается знакопеременной). Такие системы имеют пока ограниченное применение.
Фокусировке препятствует взаимное расталкивание ускоряемых ч-ц, к-рое начинает ощущаться при больших интенсивностях пучков. В различных У. вз-ствие заряж. ч-ц сказывается по-разному, но обычно именно оно определяет предельно достижимую интенсивность пучка.
В циклич. У. с однородным по азимуту магн. полем
Синхрофазотрон —циклич. резонансный У. протонов (или ионов), в к-ром меняются во времени и магн. поле , и частота у электрич. ускоряющего поля, причём так, что радиус равновесной орбиты остаётся постоянным. Для этого между у и <В> должно выполняться соотношение:
где ξ0=m0c2— энергия покоя эл-на. Согласно (7), у растёт с ростом магн. поля, асимптотически приближаясь к предельному значению qc/
Табл. 1. КРУПНЕЙШИЕ ЦИКЛИЧЕСКИЕ РЕЗОНАНСНЫЕ УСКОРИТЕЛИ
В синхрофазотроне со слабой фокусировкой магн. система представляет собой кольцевой электромагнит, обычно разбитый на неск. секторов с промежутками между ними. В процессе ускорения за счёт изменения тока в обмотках электромагнита магн. поле между его полюсами увеличивается от значения, соответствующего энергии инжекции, до макс. значения, соответствующего конечной энергии. Форма полюсов магнита подбирается так, чтобы обеспечить слабое спадание поля по радиусу в соответствии с условием (5). Ч-цы ускоряются в вакуумной камере, представляющей собой замкнутую трубу, охватывающую область вокруг равновесной орбиты. Промежутки между магн. секторами используются для размещения системы ввода ч-ц, ускоряющих устройств, вакуумных насосов, систем наблюдения за пучком и др. Ввод ч-ц производится обычно импульсным отклоняющим устройством, электрич. или магн. поле к-рого направляет впускаемые ч-цы вдоль орбиты. Ускоряющие устройства создают переменное электрич. поле, частота к-рого должна меняться в строгом соответствии с изменением магн. поля, согласно (7). Требуемая высокая точность воспроизведения обычно обеспечивается
793
автоматич. системой слежения за положением пучка: сигнал об отклонении пучка от равновесного положения используется для коррекции частоты ускоряющего поля. Под действием ускоряющего поля ч-цы группируются в камере в неск. сгустков, расположенных около устойчивых равновесных фаз, число к-рых равно кратности частоты. В процессе ускорения сгустки сжимаются всё теснее к равновесной фазе. Одновременно уменьшаются и поперечные размеры пучка. Ускоренный пучок либо используется внутри камеры (наводится на внутр. мишень), либо выводится из У. отклоняющим устройством того же типа, что и вводное, но более мощным (из-за большой энергии ч-ц).
Синхрофазотрон с сильной фокусировкой отличается от описанного прежде всего устройством магн. системы, состоящей из большого числа магнитов (рис. 3), в к-рых чередуются сильное спадание и сильное нарастание магн. поля по радиусу, т. е. обеспечивающей сильную знакопеременную фокусировку.
Рис. 3. Схема расположения магнитов в сильнофокусирующем ускорителе: Д — магниты, дефокусирующие по радиусу (n>>1), Ф — фокусирующие по радиусу (n<<-1); пунктирная кривая — орбита неотклонённой ч-цы (равновесная орбита), сплошная кривая — орбита отклонённой ч-цы.
Рис. 4. Схематич. разрез магнита синхрофазотрона с сильной фокусировкой; полюсные наконечники 2, возбуждаемые токовыми обмотками 2, создают быстро спадающее по радиусу магн. поле В в области расположения вакуумной камеры 3.
Каждый магнит осуществляет 2 функции — заворачивает ч-цы по орбите и фокусирует их (магн. структура с совмещёнными функциями; рис. 4). Применяется также магн. структура с разделёнными функциями, в к-рой фокусировка осуществляется квадрупольными линзами (рис. 5), расположенными в промежутках между заворачивающими магнитами.
Др. отличие У. с сильной фокусировкой — существование т. н. критической или переходной энергии ξкр. При энергии ξ<ξкр устойчивая равновесная фаза расположена на восходящей части кривой напряжения (фаза -0), а при энергии больше критической — на нисходящей (фаза +0).
Рис. 5. Поле магн. квадрупольной линзы: N и S — северные и южные полюсы магнита; F — сила действия магн. поля на ч-цу, движущуюся перпендикулярно плоскости рисунка (F=0 в центре О).
При прохождении критич. энергии фаза колебаний ускоряющего поля быстро смещается на 20, чтобы ч-цы, к-рые до критической энергии сгруппировались вблизи фазы -0, оказались в окрестности новой устойчивой фазы
+0.
Синхротрон — циклич. резонансный У., в к-ром частота ускоряющего поля постоянна, а меняется во времени лишь магн. поле; применяется для ускорения релятив. эл-нов. Т. к. их скорость практически равна с независимо от энергии, то радиус равновесной орбиты почти не меняется. Поэтому в синхротроне, как и в синхрофазотроне, магнит имеет вид кольца. Как слабо, так и сильно фокусирующий синхротрон конструктивно весьма схож с синхрофазотроном. Релятив. эл-ны, движущиеся в синхротроне по круговым орбитам, явл. источником интенсивного эл.-магн. излучения (см. Синхротронное излучение). Излучаемая электроном за один оборот энергия:
очень быстро растёт с энергией ч-ц и в больших У. становится сравнимой (и даже больше) с энергией, набираемой ч-цей за один оборот. Излучение сказывается и на колебаниях ч-ц около равновесной орбиты: потеря энергии приводит к затуханию колебаний, а квантовый, дискр. хар-р излучения — к их раскачке. Трудности создания мощных ускоряющих устройств, компенсирующих потери на излучение, ограничивают предельно достижимые энергии. В синхротронах достигнуты макс. энергии ~5 —10 ГэВ (табл. 1), хотя существуют проекты и на 100—150 ГэВ. В крупных синхротронах, как и в синхрофазотронах, применяется инжекция извне, в меньших — бетатронная инжекция: У. работает как бетатрон (см. ниже) до достижения релятив. энергий, а потом переходит на синхротронный режим.
Фазотрон (синхроциклотрон, циклотрон с вариацией частоты) — циклич. резонансный У., в к-ром магн. поле постоянно во времени, а уменьшается частота ускоряющего поля у; применяется для ускорения тяжёлых ч-ц (протонов, ионов). Макс. энергия протонов ~1 ГэВ. В фазотроне ч-цы движутся по спирали от центра, где расположен ионный источник (газовый разряд) к периферии вакуумной камеры, приобретая энергию при многократном прохождении ускоряющего зазора (рис. 6). Из-за спирального хар-ра орбит магнит фазотрона не кольцевой, а сплошной, так что магн. система весьма громоздка. Именно поэтому при энергиях выше 1 ГэВ предпочтительнее синхрофазотрон, хотя он и уступает по интенсивности ускоренного пучка фазотрону. В фазотронах с однородным по азимуту магн. полем фокусировка по вертикали очень
Рис. 6. Схема движения ч-ц в фазотроне и циклотроне (магн. поле перпендикулярно плоскости чертежа): 1 — ионный источник; 2 — спиральная орбита ускоряемой ч-цы; 3 — ускоряющие электроды; 4 — выводное устройство; 5 — источник ускоряющего поля.
слабая (n<<1). Для её увеличения часто используют знакопеременную фокусировку, т. е. вводят модуляцию магн. поля по азимуту (секторный фазотрон).
Описанные три типа циклич. резонансных У., основанных на механизме автофазировки, работают в импульсном режиме: группа захваченных в синхротронный (резонансный) режим ч-ц повышает свою энергию до максимальной по мере надлежащего изменения частоты ускоряющего поля и (или) индукции магн. поля, после чего ч-цы используются внутри или вне У. Затем параметры У. возвращаются к исходным значениям и начинается новый цикл ускорения. Длительность цикла ускорения в синхротронах и фазотронах порядка 10-2 с, в синхрофазотронах — неск. с.
Циклотрон — циклич. резонансный У. тяжёлых ч-ц, в к-ром и магн. поле, и частота ускоряющего электрич. поля постоянны во времени. В отличие от описанных выше У. он работает в непрерывном режиме и поэтому обладает
794
преимуществом по интенсивности ускоренного пучка. Конструктивно весьма схож с фазотроном. Т. к. и у, и В постоянны во времени, а энергия растёт, то в циклотроне с азимутальносимметричным полем, в к-ром поле должно спадать по радиусу, как следует из условия фокусировки (5), резонансное ускорение возможно лишь при нерелятив. энергиях, пока не сказывается релятив. возрастание массы ч-цы. Это и определяет предел достижимых энергий (для протонов ~10—20 МэВ при очень больших напряжениях на ускоряющих электродах). В центр. области циклотрона аксиальная фокусировка магн. полем очень слаба (n0), но там из-за малых скоростей частиц сказывается фокусировка электрическим полем (см. выше).
Знакопеременная фокусировка магн. полем позволяет добиться устойчивого ускорения до релятив. скоростей, обеспечивая точный резонанс за счёт роста ср. магн. поля по радиусу. Такой циклотрон наз. изохронным. Обладая характерной для циклотрона большой интенсивностью пучка, он способен ускорять протоны до энергий ~1000 МэВ.
Микротрон (электронный циклотрон) — циклич. У. эл-нов, в к-ром постоянны во времени и B, и у, а условие резонанса для релятив. ч-ц сохраняется за счёт изменения кратности частоты q от оборота к обороту. Так, напр., если начальная энергия эл-на и прирост его энергии при прохождении ускоряющего зазора подобраны так, что первый оборот проходится за один период ускоряющего поля (q=1), второй — за два (q=2), третий — за три (q=3) и т. д., то ч-цы будут попадать в одну и ту же фазу ускоряющего поля. В микротроне действует механизм автофазировки, так что ч-цы, близкие к равновесной, также будут ускоряться. Однородное магн. поле, необходимое для выполнения условия резонанса, не фокусирует в аксиальном направлении; эта фокусировка осуществляется электрич. полем ускоряющего резонатора. Варианты микротрона с меняющимся по азимуту полем (секторный микротрон) пока не получили развития. Микротрон — У. непрерывного действия, он позволяет получить токи до 100 мА при энергии эл-нов ~30 МэВ.
Протонные резонансные линейные ускорители. Ускорение протонов до энергий ~200 МэВ производится обычно в объёмном резонаторе с т. н. дрейфовыми трубками (схема Альвареса). В цилиндрич. резонаторе создаётся перем. электрич. поле, направленное вдоль оси резонатора. Ускоряемые ч-цы пролетают систему дрейфовых трубок так, что в ускоряющих зазорах между трубками они оказываются в моменты, когда поле направлено по движению ч-ц. Когда же оно направлено в обратную сторону, ч-цы находятся внутри трубок, куда поле не проникает (рис. 7). Механизм автофазировки обеспечивает ускорение всех ч-ц, попавших внутрь области захвата вблизи резонансной фазы. В линейном У. время прохождения расстояний между ускоряющими зазорами уменьшается с ростом энергии, так что устойчивая равновесная фаза отрицательна (-0), т. е. находится на участке, где поле растёт.
Рис. 7. Схематич. разрез резонатора (1) линейного резонансного ускорителя с дрейфовыми трубками (г). Вблизи оси электрич. поле IS сосредоточено лишь в зазорах между трубками.
Поэтому электрич. поле оказывается дефокусирующим и нужны спец. меры для обеспечения фокусировки. При малых энергиях применима т. н. фольговая или сеточная фокусировка: входы дрейфовых трубок перекрываются фольгой или сетками, так что дефокусирующая часть электрич. поля почти полностью исчезает. Для больших энергий наиб. распространена знакопеременная фокусировка с помощью магн. квадрупольных линз, фокусирующих попеременно то в одной, то в др. плоскости (на равновесной прямой траектории магн. поле должно отсутствовать). Возможна также фокусировка продольным полем, не дающим ч-цам отклоняться далеко от оси.
Преимущества линейных У. над циклическими — отсутствие громоздкой магн. системы, простота ввода и вывода ч-ц, большие плотности тока. Однако сложность и высокая стоимость радиотехнич. системы линейных У. протонов и трудности фокусировки ограничивают их возможности. Они применяются гл. обр. как инжекторы на энергии до 200 МэВ для циклич. У. (см. выше). Для ускорения при больших энергиях схема Альвареса становится неоптимальной. Здесь предпочтительнее система связанных резонаторов спец. формы или же волноводная система с диафрагмами (как в линейных электронных У.; см. ниже). Поэтому совр. линейные У. протонов на большую энергию состоят из двух ступеней различной радиотехнич. структуры. Так, напр., реализован У. в Лос-Аламосе (США) на 800 МэВ, дающий ср. ток 500 мкА. По такой же схеме сооружается У. на 600 МэВ в СССР. Эти У., предназначенные для физ. экспериментов с интенсивными мезонными пучками, наз. также мезонными фабриками, или мезонными генераторами (табл. 2).
Табл. 2. КРУПНЕЙШИЕ ЛИНЕЙНЫЕ УСКОРИТЕЛИ
Электронные резонансные линейные ускорители обладают существенным преимуществом над циклическими: в них эл-ны почти не излучают вследствие практического постоянства их скорости.
Предельная энергия эл-нов в совр. линейных резонансных У. (~20 ГэВ) обусловлена гл. обр. экономич. соображениями и может быть увеличена.
Рис. 8. 1 — Схематич. разрез волновода с диафрагмами; стрелки указывают распределение поля, бегущего вдоль волновода; 2 — ускоряемый сгусток эл-нов.
В линейных электронных У. ч-цы движутся с самого начала почти со скоростью света с. Поэтому наиб. выгодной ускоряющей системой явл. диафрагмиров. радиоволновод с бегущей волной (рис. 8). Размеры диафрагм (поперечных перегородок) подбираются так, чтобы скорость бегущей волны равнялась с, т. е. чтобы волна двигалась в резонанс с эл-нами. Близость скорости эл-нов к с приводит к особенностям в движении эл-нов. Механизм автофазировки отсутствует, т. к. скорость ч-ц не зависит от энергии. Фокусировка в поперечном направлении также часто оказывается ненужной, т. к. релятив. возрастание массы само приводит (благодаря сохранению поперечного импульса mv) к убыванию поперечных скоростей эл-нов. Кулоновское расталкивание эл-нов в электронных У. значительно ослабляется магн. притяжением параллельных токов. Ускоряемые сгустки эл-нов могут,
795
однако, возбуждать паразитные волны в волноводе, раскачивающие пучок и приводящие к неустойчивости. В больших У. этот эффект ограничивает интенсивность пучка, однако найдены инженерные методы его подавления.
Индукционные ускорители существуют двух типов — циклич. индукц. У. эл-нов (бетатрон) и линейный индукц. У. В бетатроне ускоряемые эл-ны удерживаются магн. полем на кольцевой орбите, а ускорение производится вихревым электрич. полем, индуцируемым переменным магн. потоком, проходящим через сердечник (центр. часть магнита, рис. 9).
Рис. 9. Схематич. разрез бетатрона: 1 — полюсы магнита; 2 — сечение кольцевой вакуумной камеры; 3 — центр. сердечник; 4 — обмотки электромагнита; 5 — ярмо магнита.
Для постоянства радиуса равновесной орбиты между скоростями изменения управляющего поля на орбите Bорб и ср. поля внутри орбиты