Увеличение оптическое
Вид материала | Документы |
- Оптическое оборудование, 171.18kb.
- Хованскова Инна Александровна, 37.43kb.
- Полиграфический словарь, 499.28kb.
- Увеличение продаж – возможно ли это сейчас?, 24.11kb.
- Оптическое оборудование, 440.32kb.
- Машиностроение, 219.74kb.
- Кроэкономической ситуации стало сохранение и увеличение денежных сбережений населения,, 61.54kb.
- Патофизиология регионарного кровообращения и микроциркуляции, 124.19kb.
- Увеличение пенсионного возраста для женщин, 218.59kb.
- Федеральная целевая программа «Жилище» на 2002-2010 годы и входящие в ее состав подпрограммы, 116.2kb.
УДАРНЫЙ ИМПУЛЬС, импульс ударной силы, действующий на каждое из соударяющихся тел при ударе. Величина У. и. определяется равенством
S=Рср или S=∫0Pdt, где Р — ударная сила, Pср — её среднее значение за время удара, т — время удара. В общей теории удара У. и. рассматривают как меру механич. взаимодействия тел при ударе. Иногда У. и. наз. ударом.
УДАРЫ ВТОРОГО РОДА (столкновения второго рода, соударения второго рода), неупругие столкновения возбуждённых атомов, ионов и молекул между собой и с эл-нами, при к-рых происходит увеличение кинетич. энергии сталкивающихся ч-ц за счёт их внутр. энергии (энергия возбуждения полностью или частично переходит в кинетич. энергию разлетающихся после столкновения ч-ц). Подробнее см. Столкновения атомные.
УДЕЛЬНАЯ РЕФРАКЦИЯ (r), характеризует электронную поляризуемость ед. массы в-ва в высокочастотном эл.-магн. поле световой волны. У. р. в-ва равна его рефракции молекулярной Л, делённой на молекулярную массу М. У. р. может быть выражена через показатель преломления n в-ва неск. способами; чаще всего её записывают в виде:
r=((n2-1)/(n2+1))•(1/),
где — плотность в-ва.
УДЕЛЬНАЯ ЭЛЕКТРОПРОВОДНОСТЬ, физ. величина , равная электропроводности цилиндрич. проводника единичной длины и единичной площади сечения; У. э. связана с уд. сопротивлением соотношением =1/. Её принято измерять в единицах: сименс (Ом-1) на метр или на сантиметр (См/м или См/см).
УДЕЛЬНОЕ МАГНИТНОЕ ВРАЩЕНИЕ, то же, что Верде постоянная.
УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ электрическое, физ. величина , равная электрическому сопротивлению цилиндрич. проводника единичной длины и единичной площади поперечного сечения. Обычно У. с. выражают в Ом•см или Ом•м.
УДЕЛЬНЫЙ ВЕС (), отношение веса тела Р к его объёму V: =P/V. У. в. может быть определён и через плотность в-ва: =g, где g — ускорение свободного падения. У. в. не является однозначной хар-кой в-ва, т. к. зависит от величины g (следовательно, от геогр. широты места измерений). Ед. измерения У. в. служат Н/м3 (СИ), дин/см3 (СГС); 1 Н/м3=0,1 дин/см3.
УДЕЛЬНЫЙ ОБЪЁМ, см. Объём удельный.
УДЕРЖАНИЕ «ЦВЕТА» (пленение «цвета»), в теории сильного вз-ствия — гипотетич. св-во, призванное объяснить эксперим. факт отсутствия свободных «цветных» кварков и «цветных» адронов (все адроны явл. «бесцветными» комбинациями либо трёх кварков, либо кварка и антикварка). Существует неск. феноменологич. моделей, реализующих это св-во и наз. «кварковыми мешками». В квант. теории поля У. «ц.» связывают с ростом эффективного заряда при увеличении расстояния между кварками, вследствие чего они не могут разойтись на большие (в яд. масштабе) расстояния. Имеются косв. указания на возможность осуществления механизма У. «ц.» в квантовой хромодинамике.
Д. В. Ширков.
УЕДИНЕННАЯ ВОЛНА, волновое движение (см. Волны), к-рое в каждый момент времени локализовано в конечной области пространства и относительно медленно изменяет свою структуру при распространении. Типичная У. в. имеет вид одиночного

Примеры уединённых волн: а — стационарное возвышение (солитон) на мелкой воде; h — смещение поверхности жидкости; б — ударная волна небольшой амплитуды в газе; р — изменение давления; в — импульс возбуждения в аксоне нерва; и — потенциал мембраны. По оси абсцисс отложена переменная =t-x/v, где t — время, x — координата, v — скорость уединённой волны.
импульса или перепада (рис.), но У. в. может иметь и более сложную структуру.
В более узком смысле под У. в. понимают локализованную стационарную нелинейную волну, распространяющуюся без изменения формы с постоянной скоростью и описываемую ур-ниями в обыкновенных производных. В фазовом пространстве У. в. отвечает траектория, соединяющая две различные точки равновесия или возвращающаяся в ту же самую точку. К У. в. относят, напр., такие типы нелинейных волн, как ударные волны в диссипативной среде, стационарные импульсные волны возбуждения в активных средах (напр., нервный импульс) и солитон в среде без потерь.
• См. лит. при ст. Солитон.
Л. А. Островский.
УЛЬТРАЗВУК, упругие волны с частотами прибл. от (1,5—2)•104Гц (15—20 кГц) до 109 Гц (1 ГГц); область частот У. от 109 до 1012—1013 Гц принято наз. гиперзвуком. Область частот У. удобно подразделять на три диапазона: У. низких частот (1,5•104—105 Гц), У. средних частот (105—107 Гц) и область высоких частот У. (107 —109 Гц). Каждый из этих диапазонов характеризуется своими специфич. особенностями генерации, приёма, распространения и применения.
Свойства ультразвука и особенности его распространения. По физ. природе У. представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и УЗ-выми волнами условна. Однако благодаря более высоким частотам и, следовательно, малым длинам волн (так, длины волн У. высоких частот в воздухе составляют 3,4•10-3—3,4•10-5 см, в воде 1,5X10-2—1,5 •10-4 см и в стали 5•10-2—5•10-4 см) имеет место ряд особенностей распространения У.
Малая длина УЗ-вых волн позволяет в ряде случаев рассматривать их распространение методами геометрической акустики. Это даёт возможность рассматривать отражение, преломление, а также фокусировку с помощью лучевой картины.
Ввиду малой длины волны У. характер его распространения определяется в первую очередь молекулярной структурой среды, поэтому, из-
меряя скорость с и коэфф. затухания а, можно судить о молекулярных свойствах вещества (см. Молекулярная акустика). Характерная особенность распространения У. в многоатомных газах и во мн. жидкостях — существование областей дисперсии звука, сопровождающейся сильным возрастанием его поглощения. Эти эффекты объясняются процессами релаксации (см. Релаксация акустическая). У. в газах, и в частности в воздухе, распространяется с большим затуханием (см. Поглощение звука). Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники У., затухание в них значительно меньше. Поэтому области использования У. средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только У. низких частот. Др. особенность У.— возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропорциональна квадрату частоты. УЗ-вые волны большой интенсивности сопровождаются рядом
780
нелинейных эффектов. Так, для интенсивных плоских УЗ-вых волн при малом поглощении среды (в особенности в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы); поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-вых волн в газах и в жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты; вообще говоря, она мала и составляет долю % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавитация. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов. В водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см2. На частотах диапазона УСЧ в УЗ-вом поле с интенсивностью начиная с неск. Вт/см2 может возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич. кавитация широко применяется в технологич. процессах; при этом пользуются У. низких частот.
Генерация ультразвука. Для излучения У. применяют разнообразные устройства, к-рые могут быть разбиты на 2 группы — механические и электромеханические. Механич. излучатели У.— воздушные и жидкостные свистки и сирены— отличаются простотой устройства и эксплуатации, не требуют дорогостоящей электрич. энергии высокой частоты. Их недостаток широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет использовать их для контрольно-измерит. целей; они применяются гл. обр. в пром. УЗ-вой технологии и частично — как средства сигнализации.
Основными излучателями У. являются электромеханические, преобразующие электрич. колебания в механические. В диапазоне У. низких частот возможно применение электродинамич. и электростатич. излучателей. Широкое применение в этом диапазоне частот нашли магнитострикционные преобразователи, использующие эффект магнитострикции. Для излучения У. средних и высоких частот применяются гл. обр. пьезоэлектрические преобразователи, использующие явление пьезоэлектричества. Для увеличения амплитуды колебаний и излучаемой в среду мощности, как правило, применяются резонансные колебания магнитострикц. и пьезоэлектрич. элементов на их собств. частоте.
Предельная интенсивность излучения У. определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации У. в области средних частот чрезвычайно широк: интенсивности от 10-14—10-15 Вт/см2 до 0,1 Вт/см2 считаются малыми. Для достижения больших интенсивностей, к-рые могут быть получены с поверхности излучателя, пользуются фокусировкой У. (см. Фокусировка звука). Так, в фокусе параболоида, внутренние стенки к-рого выполнены из мозаики кварцевых пластинок или из пьезокерамики, на частоте 0,5 МГц удаётся получать в воде интенсивности У. большие, чем 105 Вт/см2. Для увеличения амплитуды колебаний твёрдых тел в диапазоне У. низких частот часто пользуются стержневыми УЗ-выми концентраторами (см. Концентратор акустический), позволяющими получать амплитуды смещения 10-4 см.
Приём и обнаружение ультразвука. Вследствие обратимости пьезоэффекта пьезоэлектрич. преобразователи используются и для приёма У. Для изучения УЗ-вого поля можно пользоваться и оптич. методами; У., распространяясь в к.-л. среде, вызывает изменение её оптич. показателя преломления, что позволяет визуализировать звуковое поле, если среда прозрачна для света. Совокупность уплотнений и разрежений, сопровождающая распространение УЗ-вой волны, представляет собой своеобразную решётку, дифракцию световых волн на к-рой можно наблюдать в оптически прозрачных телах. Дифракция света на ультразвуке легла в основу смежной области акустики и оптики — акустооптики, к-рая получила большое развитие после возникновения газовых лазеров непрерывного действия.
Применения ультразвука. Ультразвуковые методы применяются в физике твёрдого тела, в частности в физике полупроводников, в результате чего возникла новая область акустики — акустоэлектроника. На основе её достижений разрабатываются приборы для обработки сигнальной информации в микрорадиоэлектронике. У. играет большую роль в изучении структуры в-ва. Наряду с методами молекулярной акустики для жидкостей и газов в области изучения твёрдых тел измерение скорости с и коэфф. поглощения а используются для определения модулей упругости и диссипативных характеристик в-ва. Получила развитие квантовая акустика, изучающая взаимодействие фононов с электронами проводимости, магнонами и др. квазичастицами в твёрдых телах.
У. широко применяется в технике. По данным измерений с и а во многих технич. задачах осуществляется контроль за протеканием того или иного
процесса (контроль концентрации смеси газов, состава разл. жидкостей и т. п.). Используя отражение У. на границе разл. сред, с помощью УЗ-вых приборов измеряют размеры изделий (напр., УЗ-вые толщиномеры), определяют уровни жидкостей в ёмкостях, недоступных для прямого измерения. У. сравнительно малой интенсивности (до ~0,1 Вт/см2) используется в дефектоскопии для неразрушающего контроля изделий из твёрдых материалов (рельс, крупных отливок, качеств. проката и т. д.). При помощи У. осуществляется звуковидение: преобразуя УЗ-вые колебания в электрич., а последние в световые, оказывается возможным при помощи У. видеть те или иные предметы в непрозрачной для света среде. Для получения увеличенных изображений предмета с помощью У. высокой частоты создан акустич. микроскоп, аналогичный обычному микроскопу, преимущество к-рого перед оптическим — высокая контрастность, что при биол. исследованиях не требует предварит. окрашивания предмета, и возможность получать изображения оптически непрозрачных объектов. Развитие голографии привело к определённым успехам в области УЗ-вой голографии (см. Голография акустическая). Важную роль У. играет в, гидроакустике, поскольку упругие волны являются единств. видом волн, хорошо распространяющихся в морской воде. На принципе отражения УЗ-вых импульсов от препятствий, возникающих на пути их распространения, строится работа эхолота, гидролокатора и др.
У. большой интенсивности (гл. обр. диапазон низких частот) применяется в технике, оказывая воздействие на протекание технологич. процессов посредством нелинейных эффектов — кавитации, акустич. потоков и др. Так, при помощи мощного У. ускоряется ряд процессов тепло- и массообмена в металлургии. Воздействие УЗ-вых колебаний непосредственно на расплавы позволяет получить более мелкокристаллич. и однородную структуру металла. УЗ-вая кавитация применяется для очистки от загрязнений как мелких (часовое производство, приборостроение, электронная техника), так и крупных производств. деталей (трансформаторное железо, прокат и др.). С помощью У. удаётся осуществить пайку алюминиевых изделий, приварку тонких проводников к напылённым металлич. плёнкам и непосредственно к полупроводникам, сварку пластмассовых деталей, соединение полимерных плёнок и синтетич. тканей. У. позволяет обрабатывать хрупкие детали, а также детали сложной конфигурации.
У. применяется в биологии и медицине. При действии У. на биол. объ-
781
екты происходит его поглощение и преобразование акустич. энергии в тепловую. Локальный нагрев тканей на доли и единицы градусов, как правило, способствует жизнедеятельности биол. объектов, повышая интенсивность процессов обмена в-в. Однако более интенсивные и длит. воздействия могут привести к перегреву биологических структур и их разрушению.
В медицине У. используется для диагностики, терапевтич. и хирургич. лечения. Способность У. без существенного поглощения проникать в мягкие ткани организма и отражаться от акустич. неоднородностей используется для диагностики внутр. органов. Микромассаж тканей, активация процессов обмена и локальное нагревание тканей под действием У. используются для терапевтич. целей. УЗ-вая хирургия подразделяется на две разновидности, одна из к-рых связана с разрушением тканей собственно звуковыми колебаниями, а вторая — с наложением УЗ-вых колебаний на хирургич. инструмент.
• Бергман Л., Ультразвук, пер. с нем., М., 1956; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1—7, М., 1966—74; Физика и техника мощного ультразвука, под ред. Л. Д. Розенберга, т. 1—3, М., 1967—70; Зарембо Л. К., Красильников В. А., Введение в нелинейную акустику, М., 1966; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Викторов И. А., Звуковые поверхностные волны в твердых телах, М., 1981; Труэлл Р., Эльбаум Ч., Чик Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Ультразвуковая технология, под ред. Б. А. Аграната, М., 1974; Эльпинер И. Е., Биофизика ультразвука, М., 1973.
В. А. Красильников.
УЛЬТРАМИКРОСКОП, оптич. прибор для обнаружения мельчайших (коллоидных) ч-ц, размеры к-рых меньше предела разрешения (см. Разрешающая способность оптич. приборов) обычных световых микроскопов. Возможность обнаружения таких ч-ц с помощью У. обусловлена дифракцией света на них. При сильном боковом освещении каждая ч-ца в У. отмечается наблюдателем как яркая точка (светящееся дифракц. пятно) на тёмном фоне. Вследствие дифракции на мельчайших ч-цах рассеивается очень мало света. Поэтому в У. применяют, как правило, сильные источники света. В зависимости от интенсивности освещения, длины световой волны, разности показателей преломления ч-цы и среды обнаруживаемые ч-цы имеют размеры ~ (2—50)•10-9 м. По дифракц. пятнам нельзя определить истинные размеры, форму и структуру ч-ц: У. не даёт изображений оптических исследуемых объектов. Однако, используя У., можно установить наличие и численную концентрацию ч-ц, изучать их движение, а также рассчитать средний размер ч-ц, если
известна их весовая концентрация и плотность.
У. создали в 1903 нем. физик Г. Зидентопф и австр. химик Р. Зигмонди. В предложенной ими схеме щелевого У. (рис., а) исследуемая система неподвижна. Кювета 5 с изучаемым объектом освещается источником света 1 (2 — конденсор; 4 — осветительный объектив) через узкую прямоугольную щель 3, изображение к-рой проецируется в зону наблюдения.

Принципиальные схемы щелевого (а) и поточного (б) ультрамикроскопов.
В окуляр наблюдательного микроскопа 6 видны светящиеся точки ч-ц, находящихся в плоскости изображения щели. Выше и ниже освещённой зоны присутствие ч-ц не обнаруживается.
В поточном У. (рис., б) изучаемые ч-цы движутся по трубке навстречу глазу наблюдателя. Пересекая зону освещения, они регистрируются как яркие вспышки визуально или с помощью фотометрич. устройства. Регулируя яркость освещения наблюдаемых ч-ц подвижным клином фотометрическим 7, можно выделять для регистрации ч-цы, размер к-рых превышает заданный предел. С помощью поточного У. определяют концентрацию золей в пределах от 1 до 107 ч-ц в 1 см3.
У. применяют при исследованиях дисперсных систем, для контроля чистоты атм. воздуха, воды, степени загрязнения оптически прозрачных сред посторонними включениями.
• Коузов П. А., Основы анализа дисперсного состава промышленных пылей и измельченных материалов, 2 изд., Л., 1974; Воюцкий С. С., Курс коллоидной химии, 2 изд., М., 1975.
Л. А. Шиц.
УЛЬТРАФИОЛЕТОВАЯ СПЕКТРОСКОПИЯ (УФ спектроскопия), раздел оптич. спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в УФ области
спектра (400—10 нм). Исследованием спектров в области 200—10 нм занимается вакуумная спектроскопия (см. Ультрафиолетовое излучение). В области спектра 400—200 нм используют приборы, построенные по тем же оптич. схемам, что и спектральные приборы для видимой области; отличие состоит лишь в замене стеклянных призм, линз и др. оптич. деталей, поглощающих УФ излучение, на кварцевые. При измерении интенсивности УФ излучения в качестве эталонных применяют источники, имеющие в УФ области спектра известное распределение спектральной яркости (ленточная вольфрамовая лампа, угольная дуга, а также синхротронное излучение); стандартными приёмниками в этой области спектра являются термопара и градуированные фотоэлементы.
У. с. применяется при исследовании атомов, ионов, молекул и твёрдых тел для изучения их уровней энергии, вероятностей квантовых переходов и др. хар-к. В УФ области спектра лежат резонансные линии нейтральных, одно- и двукратно ионизованных атомов, а также спектральные линии, испускаемые возбуждёнными конфигурациями высокоионизованных атомов. Электронно-колебательно-вращательные полосы молекул в осн. также располагаются в ближней УФ области спектра. Здесь же сосредоточены полосы поглощения в спектрах большинства полупроводников, возникающие при прямых переходах из валентной зоны в зону проводимости. Мн. хим. соединения дают сильные полосы поглощения в УФ области, что создаёт преимущества использования У. с. в спектральном анализе. У. с. имеет большое значение для внеатмосферной астрофизики при изучении Солнца, звёзд, туманностей и др.
• См. лит. при ст. Ультрафиолетовое излучение.
УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ (ультрафиолетовые лучи, УФ излучение), не видимое глазом эл.-магн. излучение, занимающее спектр. область между видимым и рентгеновским излучением в пределах длин волн от 400 до 10 нм. Область У. и. условно делится на ближнюю (400—200 нм) и далёкую, или вакуумную (200— 10 нм); последнее назв. обусловлено тем, что У. и. этого диапазона сильно поглощается воздухом и его исследование возможно только в вакууме.
Ближнее У. и. открыто в 1801 нем. учёным И. В. Риттером и англ. учёным У. Волластоном, вакуумное до 130 нм— нем. физиком В. Шуманом (1885— 1903), а до 25 нм — англ. физиком Т. Лайманом (1924). Промежуток между вакуумным У. и. и рентгеновским изучен к 1927.