Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем.

Вид материалаКнига

Содержание


§ 3.6. Математическое приложение
Глава 4 диверсификация и риск
Не складывайте яйца в одну корзину
Подобный материал:
1   ...   11   12   13   14   15   16   17   18   ...   44

§ 3.6. Математическое приложение


Доказательство формулы (3.21)

Для того чтобы убедиться в справедливости (3.21), найдем барьерную точку выпуска для условия, согласно которому современная стоимость доходов равна современной стоимости затрат. При расчете современных стоимостей полагаем, что выпуск и реализация продукции равномерно распределены в пределах года. В связи с этим без заметной потери точности в расчетах отнесем эти величины к серединам соответствующих лет. В терминах финансовой математики соответствующие потоки представляют собой постоянные годовые ренты с платежами в середине периодов. Пусть PV — оператор определения современной стоимости соответствующего потока платежей. Современная стоимость потока переменных и постоянных затрат, в которые включены и амортизационные начисления, в этом случае составит

PV(f + d + cQ) = (f + d + cQ)v0,5 +...+ (f + d + cQ)vt-0,5 = (f + d + cQ)an;i (1 + i)0,5,

где an;i — коэффициент приведения постоянной ренты;

v — дисконтный множитель.

В свою очередь, современная стоимость поступлений находится как

PV (pQ) = pQv0,5 + pQv1,5 +...+ pQvn-0,5 = pQan;i (1 + i)0,5.

Из равенства полученных современных стоимостей:

(f + d + cQ)a(1 + i)0,5 = pQa(1 + i)0,5

находим искомое соотношение


ГЛАВА 4 ДИВЕРСИФИКАЦИЯ И РИСК


Если человек начинает с определенности,

то закончит сомнениями,

если же он готов начать с сомнений,

то закончит определенностью.

Ф. Бэкон

Не складывайте яйца в одну корзину

Житейская мудрость

§4.1. Риск


В финансовом анализе производственных инвестиций мы неизбежно сталкиваемся с неопределенностью показателей затрат и отдачи. В связи с этим возникает проблема измерения риска и его влияния на результаты инвестиций.

Широко распространенный термин "риск", как известно, понимается неоднозначно. Его содержание определяется той конкретной задачей, где этот термин используется. Отметим, что даже самое общее определение понятия "риск" не оставалось неизменным во времени. Говоря о первом в экономике научном его определении, обычно ссылаются на Ф. Найта17, который предложил различать риск и неопределенность. Риск имеет место тогда, когда некоторое действие может привести к нескольким взаимоисключающим исходам с известным распределением их вероятностей. Если же такое распределение неизвестно, то соответствующая ситуация рассматривается как неопределенность. Как нам представляется, скорее здесь речь идет не об определении риска, а лишь о наличии информации, характеризующей риск.

В экономической практике, особенно финансовой, обычно не делают различия между риском и неопределенностью. Чаще всего под риском понимают некоторую возможную потерю, вызванную наступлением случайных неблагоприятных событий. В некоторых областях экономической деятельности сложились устойчивые традиции понимания и измерения риска. Наибольшее внимание к измерению риска проявлено в страховании. Измеритель риска как возможной потери страховщика был использован еще в конце XVIII в.18 В других направлениях финансовой деятельности под риском также понимается некоторая потеря. Последняя может быть объективной, т. е. определяться внешними воздействиями на ход и результаты деятельности хозяйствующего субъекта. Так, например, потеря покупательной способности денег (инфляционный риск) не зависит от воли и действий их владельца. Однако часто риск как возможная потеря может быть связан с выбором того или иного решения, той или иной линии поведения. Заметим также, что в некоторых областях деятельности риск понимается как вероятность наступления некоторого неблагоприятного события. Чем выше эта вероятность, тем больше риск. Такое понимание риска оправданно в тех случаях, когда событие может наступить или не наступить (банкротство, крушение и т. д.).

Когда невозможны непосредственные измерения размеров потерь или их вероятностей, риск можно измерить с помощью ранжирования соответствующих объектов, процессов или явлений в отношении возможного ущерба, потерь и т. д. Ранжирование обычно основывается на экспертных суждениях.

Естественной реакцией на наличие риска в финансовой деятельности является стремление компенсировать его с помощью так называемых рисковых премий (risk premium), которые представляют собой различного рода надбавки (к цене, уровню процентной ставки, тарифу и т. д.), выступающие в виде "платы за риск". Второй путь ослабления влияния риска заключается в управлении риском. Последнее осуществляется на основе различных приемов, например, с помощью заключения форвардных контрактов, покупки валютных или процентных опционов и т. д. Одним из приемов сокращения риска, применяемых в инвестиционных решениях, является диверсификация, под которой понимается распределение общей инвестиционной суммы между несколькими объектами. Диверсификация — общепринятое средство сокращения многих видов риска. С увеличением числа элементов набора (портфеля) уменьшается общий размер риска. Однако только в случае, когда риск может быть измерен и представлен в виде статистического показателя, управление риском получает надежное основание, а последствия диверсификации поддаются анализу с привлечением методов математической статистики.

В инвестиционном анализе и страховом деле риск часто измеряется с помощью таких стандартных статистических характеристик, как дисперсия и среднее квадратическое (стандартное) отклонение. Обе характеристики измеряют колебания дохода от инвестиций. Чем они больше, тем выше рассеяние показателей дохода вокруг средней и, следовательно, значительнее степень риска.

Напомним, что между дисперсией D и средним квадратическим отклонениемсуществует следующее соотношение:



В свою очередь, выборочная дисперсия относительно средней находится как

,

где n — количество наблюдений;

— средняя случайной переменной х.

Как известно, среднее квадратическое отклонение имеет то неоспоримое достоинство, что при близости реального распределения (речь здесь идет о распределении дохода от инвестиций) к нормальному, что, строго говоря, должно быть статистически проверено, этот параметр может быть использован для



определения границ, в которых с заданной вероятностью следует ожидать значение случайной переменной. Так, например, с вероятностью 68% можно утверждать, что значение случайной переменной х (в нашем случае доход) находится в границах , а с вероятностью 95% — в пределах и т. д. (рис. 4.1).