Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем.

Вид материалаКнига

Содержание


§ 3.4. Положение барьерных точек при неопределенности в исходных данных
§ 3.5. Барьерные точки объемов производства, финансовый подход к их определению
Подобный материал:
1   ...   10   11   12   13   14   15   16   17   ...   44

§ 3.4. Положение барьерных точек при неопределенности в исходных данных


Барьерное значение выпуска продукции определялось выше для линейной и нелинейной моделей при условии, что все исходные данные установлены однозначно. В этой ситуации получают только одно расчетное значение выпуска. В действительности все не так просто. Так, цену продукции, вероятно, можно с большей надежностью определить для будущего лишь в виде некоторого интервала . Обратившись к линейной модели, получим интервал значений барьерного выпуска продукции (рис. 3.10).

Аналогичное можно сказать и об остальных параметрах в формуле (3.3). Таким образом, при условии, что неоднозначными являются постоянные или переменные затраты, получим диапазоны барьерных показателей выпуска для линейной модели (рис. 3.11 и рис. 3.12).



Рис. 3.10

На рис. 3.13 иллюстрируется совместное влияние на положение барьерного выпуска продукции неопределенности в цене продукции и переменных затратах. На этом же рисунке показана зависимость размера прибыли от выпуска продукции для двух крайних сочетаний значений параметров p и с. В свою очередь, неоднозначность в ожидаемой цене продукта и постоянных затратах приводит к результату, который показан на рис. 3.14.



Рис. 3.11 Рис. 3.12



Рис. 3.13 Рис. 3.14

На рис. 3.15 показана ситуация, при которой интервалами заданы значения всех трех параметров — четыре критические точки: а, b, с, d, причем точка а соответствует минимальным затратам и максимальной цене, точка b — максимальным затратам и цене, точка с — максимальным затратам и минимальной цене, точка d — минимальным затратам и цене. В зависимости от выдвинутых условий можно получить ряд диапазонов для барьерной точки: а — b, а — с и т. д. Определение диапазонов значений управляющей переменной является частным случаем анализа, о котором речь пойдет в гл. 6.



Рис. 3.15

Что касается способов определения интервалов для значений параметров, то в большинстве случаев вполне оправданно экспертное их оценивание (см. гл. 8).

Расчет интервалов для барьерных значений управляющих переменных дает более полное представление о реально ожидаемых результатах производственной деятельности. Рассмотренный метод определения таких интервалов представляет частный случай анализа чувствительности, о котором речь пойдет в гл. 6.

§ 3.5. Барьерные точки объемов производства, финансовый подход к их определению


Постановку задачи по определению барьерного объема выпуска продукции можно расширить, учитывая дополнительные условия. Представим себе, что разрабатывается проект по производству некоторого нового вида продукции. Выпуск продукции намечен в течение n лет в равных объемах по годам. Что касается затрат, то сохраняется их деление на постоянные (не связанные с объемами производства) и переменные (пропорциональные выпуску продукции). Таким образом, и текущие затраты, и поступления от реализации продукции можно представить в виде потоков платежей. Здесь возможны два конкурирующих подхода к решению. В первом, который условно назовем бухгалтерским, инвестиции не принимаются во внимание непосредственно — они учитываются через амортизационные отчисления. Последние включают в текущие затраты. Во втором, финансовом подходе инвестиции играют ключевую роль: они выступают в качестве самостоятельного фактора, в то время как амортизация не учитывается в текущих расходах.

Как видим, оба метода избегают двойного счета инвестиционных затрат.

Указанные методы применяются на практике и, естественно, дают разные результаты. Начнем с бухгалтерского, согласно которому необходимо определить тот минимальный объем выпуска, при котором затраты окупятся, но не принесут прибыли. Иначе говоря, метод предполагает ориентацию на прибыль.

Найдем размер прибыли в зависимости от объема выпуска продукции для одного временного интервала:

P = pQ - (cQ + f + d),

где p и с имеют тот же смысл, что и выше (см. §3.1);

f — постоянные расходы за год;

d — сумма амортизационных списаний за тот же период.

Пусть сумма амортизации определена линейным способом, т. е. d = const.

Если принять во внимание тот факт, что выпуск продукции (поступления дохода) и затраты представляют собой потоки платежей, то "конкурирующие" функции определяются как современные стоимости соответствующих потоков, а именно: PV(pQ) и PV(f + d + cQ), где PV— оператор определения современной стоимости соответствующего потока. Графическая иллюстрация положения барьерной точки выпуска представлена на рис. 3.16.

Конкретизируем сказанное и найдем барьерную точку выпуска для условия, согласно которому выпуск и реализация продукции равномерно распределены в пределах года. В связи с этим без заметной потери точности в расчетах отнесем эти величины к серединам соответствующих лет.

Барьерный объем выпуска продукции составит (см. § 2.6):

(3.21)

что, по существу, совпадает с формулой (3.3). Отличие от последней состоит только в выделении в числителе в качестве самостоятельного слагаемого суммы амортизационных расходов.



Рис. 3.16

Предположим теперь, что все участвующие в расчете удельные характеристики изменяются во времени, т. е. вместо p, c, f, d имеем pt, ct, ft, dt. Переменные параметры, несомненно, более адекватны реальности. Например, затраты на производство растут в связи с увеличением расходов на ремонт по мере износа оборудования, в то же время постоянные затраты могут уменьшаться. В ряде случаев есть основание задаться некоторой закономерностью изменения цен продукции во времени и т. д. Равенство современных стоимостей "конкурирующих" функций в этом случае имеет вид



Отсюда

. (3.22)


ПРИМЕР 8

В таблице приведены исходные данные для расчета барьерного выпуска на основе потоков платежей. Все параметры, кроме сумм амортизации, здесь переменные величины и рассчитаны на 1000 единиц выпуска продукции.

t

p

с

f

d

1

50

28

20

30

2

50

28

20

30

3

46

30

16

30

4

46

30

16

30

5

42

31

12

30

Для дисконтирования применим процентную ставку 15%. Необходимые для расчета по формуле (3.22) данные приведены в следующей таблице.

t

vn

f + d

(f+d)vn

pvn

cvn

1

0,93250

50

46,62500

46,62500

26,11000

2

0,81087

50

40,54350

40,54350

22,70436

3

0,70511

48

32,43506

33,84528

21,15330

4

0,61314

45

28,20444

27,59130

18,39420

5

0,53316

42

22,39284

22,39283

16,52804

Итого






170,20008

170,99791

104,88990

Qk = = 2,57.

Перейдем к финансовому методу, который в отличие от бухгалтерского учитывает размер капитальных вложений, непосредственно осуществленных для реализации проекта, и поток чистых поступлений (без учета амортизационных отчислений). В частном случае, когда удельные характеристики постоянны, имеем следующую последовательность платежей:

-K, (p - c)Q - f, (p - c) Q - f, ...

где K — размер инвестиций.

Современная стоимость такого потока представляет собой чистый приведенный доход (показатель NPV), с которым мы уже встречались в гл. 1 (§ 1.6). В принятых здесь обозначениях и с привязкой чистых поступлений к середине соответствующих периодов можно записать:

NPV = - K + [(p - c)Q - f]an;i (1 + i)0,5. (3.23)

По определению, в барьерной точке NPV = Q. Отсюда

(3.24)

Первое слагаемое в скобках равно члену финансовой ренты, современная стоимость которой равна сумме инвестиций.

Поток чистых поступлений можно расчленить без потери в точности для последующих расчетов на два потока — поступлений (положительные величины) и расходов (отрицательные величины). Соответственно при постоянных параметрах этих потоков имеем pQ и cQ + f. Графическая иллюстрация изменения современных стоимостей указанных потоков в зависимости от выпуска представлена на рис. 3.17.


ПРИМЕР 9

Применим оба метода анализа, бухгалтерский и финансовый, для анализа инвестиционного проекта, который характеризуется следующими данными: K = 1100, р = 50, с = 30, f = 5, d = 100, п = 10 лет. Дисконтирование осуществляется по ставке 12% годовых.

По формуле (3.21) находим

Qk = = 5,25.

В свою очередь, финансовый метод дает

Qk = = 9,45.

Как видим, последний ответ существенно отличается от предыдущего.



Рис. 3.17

При сравнении формул (3.21) и (3.24) становится очевидным, что расхождение в результатах оценки барьерной точки выпуска связано с тем, что



Иначе говоря, член ренты, амортизирующей капиталовложения, должен быть больше амортизационных отчислений. Равенство в приведенном соотношении будет наблюдаться только в случае, когда i = 0. В этом случае ап;0 = п.

При бухгалтерском подходе из поля зрения аналитика выпадает выгода от возможного иного пути использования ресурсов. В связи с этим введем важное в современной экономике понятие условной (вменённой) потери прибыли (opportunity costs) в результате неиспользования альтернативного курса действий. Для иллюстрации приведем следующий пример. Пусть ресурсом для конкретности является производственное здание. У владельца имеются две альтернативы его использования:
  • осуществить некоторый производственный проект, предусматривающий использование этого здания;
  • продать здание (или сдать его в аренду).

Если владелец реализует проект, то он теряет вторую возможность получения дохода. Таким образом, хотя при реализации проекта здание не приобретается, его стоимость должна включаться в инвестиционные издержки. Здесь уместно привести следующую иллюстрацию16. Компания Локхид обратилась в 1971 г. в Конгресс США по поводу убыточности производства военных самолетов TriStar L-1011. Обращение аргументировалось тем, что коммерческая привлекательность производства была определена с учетом барьерной точки выпуска в размере около 200 самолетов. Однако эта величина не учитывала ранее сделанных капиталовложений в сумме 1 млрд. долл. С учетом указанных вмененных затрат барьерная точка повышается до 500 самолетов.