Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

?ие названий сторон прямоугольного треугольника необходимо сопровождать устными упражнениями, направленными на их запоминание и распознавание на чертеже. С этой целью можно предложить следующие задания:

1.Отрезки AB и CD пересекаются под прямым углом в точке O. Назовите гипотенузы и катеты прямоугольных треугольников AOC и BOD.

2.В треугольнике MNK проведена высота KD. Назовите получившиеся при этом прямоугольные треугольники, их гипотенузы и катеты.

Утверждения об углах прямоугольного треугольника, являясь прямыми следствиями из теоремы о сумме углов треугольника, чрезвычайно просто доказываются. Их доказательства можно предложить провести учащимся самостоятельно.

3.Один из углов прямоугольного треугольника равен: а) 20; б) 30; в) 45. Найти второй острый угол треугольника.

4.Определите острые углы прямоугольного треугольника, если один из них в 2 раза больше другого.

Далее рассмотреть свойства прямоугольного треугольника. Изучение пункта 34 о свойствах прямоугольного треугольника можно начать с решения задачи 254 и 255. После этого рассмотреть свойство 1, которому следует уделить особое внимание (катет прямоугольного треугольника, лежащего против угла в 30, в два раза меньше гипотенузы). Так как учащиеся будут использовать его при решении задач, а в дальнейшем - при получении значений тригонометрических функций углов 30 и 60. Использование этого свойства можно показать на примере задачи 265. Доказательство свойств 2 и 3 следует провести учителю самому с записью условия и заключения прямого и обратного утверждений на доске в виде таблицы. Эту таблицу учащиеся должны воспроизвести в своих тетрадях.

 

ТеоремаОбратная теоремаДано? ABC, < A = 90, < B = 30? ABC, < A = 90, AC=BCДоказатьAC=BC< B = 30

Затем рекомендуется решить задачи 257, 259, 260.

Перед доказательством специальных признаков равенства треугольников полезно вспомнить общие признаки, но не отвлечённо, применительно к прямоугольным треугольникам. Это можно сделать, предложив, например, устно по готовому рисунку провести доказательства:

. Докажите, что если два катета одного прямоугольного треугольника соответственно равны двум катетам другого, то такие треугольники равны.

. Докажите, что два прямоугольных треугольника ABC и A1B1C1 с прямым углом C и C1 равны, если у них равны катеты BC B1C1 и прилежащие к ним острые углы: <B и <B1.

После выполнения задачи 2 можно сделать замечание о том, что если в прямоугольных треугольниках ABC и A1B1C1 <A = <A1, то и <B = <B1, так как углы B B1 дополняют до 90 равные углы A и A1. А значит, можно доказать равенство этих треугольников по катету и противолежащему острому углу.

Следует также сказать, что этот признак и ещё два признака, которые могут рассматриваться далее, являются специальными признаками прямоугольных треугольников.

Доказательство этого признака можно предложить учащимся провесит самостоятельно.

Сформулировать признак равенства прямоугольных треугольников по гипотенузе и острому углу, учитель может и его предложить учащимся доказать самостоятельно.

Закрепить доказанные признаки можно а ходе выполнения заданий.

Обоснуйте равенство треугольников на рисунке а).

 

 

. На рисунке б) <B = <D = 90, BC¦AD. Докажите, что ?ABC = ?CDA.

Или решить задачи 261,263 из учебника.

На доказательство признака равенства треугольников по гипотенузе и катету следует обратить особое внимание. Если предыдущие признаки доказываются весьма просто, то доказательство этого признака требует дополнительных построений и непростых логических рассуждений. После того как учитель сам проведёт доказательство признака равенства прямоугольных треугольников по гипотенузе и катету, можно решить задачу 267 на применение рассмотренного признака.

Для закрепления этого признака можно предложить учащимся задание:

. Из точки D, лежащей внутри угла A, опущены перпендикуляры DB и DC на стороны угла. Докажите, что ?ADB = ?ADC, если DB = DC

При решении задач ученики могут делать дополнительный шаг, присутствующий в доказательстве первых двух признаков, если устанавливать равенство второй пары острых углов и сводить доказательство к общим признакам треугольников.

Теорема Пифагора и методика её изучения

В этом параграфе изучается одна из важнейших теорем геометрии - теорема Пифагора и обратная ей теорема. Теорема Пифагора позволят значительно расширить круг задач, решаемых в курсе геометрии. На ней в значительной мере базируется дальнейшее изложение теоретического курса.

В результате изучения данного параграфа учащиеся должны:

знать формулировки теоремы Пифагора и следствий из неё; уметь воспроизводить доказательство теоремы Пифагора, применять ее при решении задач.

Чтобы теорема заинтересовала учеников и была ими усвоена, нужна основательная, всесторонняя подготовка. Не заинтересовавшиеся не будут слушать (слушать пассивно), и урок потеряет смысл, не будет уроком.

Перед доказательством теоремы Пифагора желательно провести подготовительную работу по готовым чертежам и повторить основные понятия, определения, термины; свойства площадей, так как в доказательстве используется площадь прямоугольника.

При проведении доказательства теоремы Пифагора полезно подвести учеников к тому, чтобы они приняли пассивное участие в составлении формулировки теоремы; освоили формулировку, выделили условие и заключение. Учитель должен, заранее заготовив чертёж, необходимый для