Гидродинамические характеристики стандартов полистиролсульфоната в растворах различной ионной силы

Дипломная работа - Химия

Другие дипломы по предмету Химия



Санкт-Петербургский государственный университет

Физический факультет

Кафедра физики полимеров

Гидродинамические характеристики стандартов полистиролсульфоната в растворах различной ионной силы

Выпускная квалификационная работа на соискание академической степени магистра физики

Выполнена студентом Смирновым Артемом Михайловичем

Научный руководитель: доктор физ.-мат. наук Павлов Г.М

Рецензент: Мельников Александр Борисович

Санкт-Петербург

год.

Введение

Молекулярные свойства полимеров определяют физико-химические характеристики материалов, изготовленных на их основе. Конформация и размеры молекул ДНК, РНК и белков оказывают прямое влияние на способность этих молекул выполнять свои биологические функции. В связи с этим, изучение молекулярных свойств полимеров имеет принципиальное значение для решения прикладных и фундаментальных задач физикохимии высокомолекулярных соединений, биофизики, химии, фармакологии и др.

Важнейшее свойство полимерных молекул - их способность сворачиваться, изменять свою конформацию от палочкообразной до клубковой при увеличении длины полимерной цепи, определяется их равновесной жесткостью.

Для определения конформационных характеристик полимерных цепей, к которым в первую очередь относится их равновесная жесткость, разработан ряд физических методов, основанных на измерении поступательного и вращательного трения макромолекул. К числу этих методов следует отнести динамическое рассеяние света, изотермическую диффузию, седиментацию, вискозиметрию, электрическое и динамическое двойное лучепреломление и ряд других.

1. Основы статистики линейных полимерных цепей

Полимерные молекулы в основном являются цепями атомов, соединенных простыми (единичными) связями одинаковой длины ? и образующих друг с другом валентный угол ?. Тепловое движение составляющих полимерную цепь атомов, проявляющееся во вращении их вокруг направления валентных связей, должно приводить к значительной свернутости цепи. Клубкообразная структура не является единственно возможной для макромолекул. В определенных случаях силы, действующие между соседними атомами цепи, столь велики, что тепловое движение не может привести к изгибанию и скручиванию цепи. При этом макромолекула имеет палочкообразную конформацию. Существенную роль в стабилизации такой конформации играют водородные связи, действующие между несоседними атомами цепи и приводящие к образованию внутримолекулярной структуры. В других случаях макромолекула принимает форму жесткой глобулы, имеющей приблизительно сферическую форму.

.1 Идеальная полимерная цепь

Модель идеальной макромолекулы играет в физике полимеров такую же роль, как представление об идеальном газе в обычной молекулярной физике. Эта модель представляет собой цепочку из бестелесных звеньев; каждое из звеньев идеальной цепи соединено с двумя ближайшими по цепи соседями, но не взаимодействует ни с молекулами растворителя, ни с другими звеньями этой же или других макромолекул. Так же как существует много идеальных газов (одноатомный, двухатомный и т.д. - важно лишь, чтобы молекулы не взаимодействовали друг с другом), так есть и целый ряд моделей идеальных цепей; они различаются структурой звеньев и устройством связей между ближайшими соседями, но идеальность во всех случаях состоит в отсутствии объемных взаимодействий. Круг реальных условий, при которых молекулы ведут себя как реальные, не очень широк - в основной это разбавленные растворы полимеров в так называемых ?-растворителях, а также полимерные расплавы. Тем не менее, идеальные модели очень полезны, так как позволяют составить правильное представление о характере теплового движения макромолекул, другими словами - об энтропийных свойствах полимерного вещества.

.2 Свободно-сочлененная цепь

Для описания конформационных свойств полимерных молекул важное значение имеет модель свободно-сочлененной цепи, введенная в рассмотрение и разработанная Куном и Марком. В этой модели реальная полимерная цепь заменяется эквивалентной, состоящей из N прямолинейных сегментов длиной A, пространственные ориентации которых взаимно независимы. Полная длина эквивалентной цепи L принимается равной длине полностью вытянутой (без деформации валентных углов) реальной цепи (контурная длина):

Вторым необходимым условием, которому должна удовлетворять модельная эквивалентная цепь, является совпадение ее начала и конца с началом и концом реальной цепи при любой конформации последней. Таким образом, длина вектора h, соединяющего концы цепи, имеет одно и то же значение для реальной и модельной цепей. Величина h служит важнейшей характеристикой конформационных свойств полимерной цепи.

Поскольку ориентации сегментов свободно сочлененной цепи взаимно независимы, они могут являться объектом применения статистического метода.

Развитие статистики полимерных цепей на основе свободно-сочлененной модели привело к установлению важной закономерности - гауссова распределения расстояний h в ансамбле длинных цепных молекул (каждая длиной L):

Здесь - вероятность того, что для произвольно выбранной из ансамбля цепи (состоящей из N сегментов длиной A) расстояние ?/p>