Гидродинамические характеристики стандартов полистиролсульфоната в растворах различной ионной силы

Дипломная работа - Химия

Другие дипломы по предмету Химия



ации полученных таким образом полимерных солей значительно выше, чем исходных поликислот.

В кислой области pH карбоксилы остаются практически неионизованными, и поведение макромолекул ничем не отличается от поведения макромолекул обычного линейного полимера. Однако в нейтральной или щелочной области появление множества одноименно заряженных групп в молекуле(карбоксилатных ионов, -COO-) и соответствующих сил электростатического отталкивания приводит к развертыванию макромолекулярных цепей и к сильному увеличению размеров клубков; попутно при этом возникают своеобразные концентрационные эффекты, проявляющиеся при измерениях вязкости, седиментации и диффузии.

К рассматриваемому классу поликислот относятся также многие полимеры биологического происхождения. Здесь стоит назвать в первую очередь нуклеиновые кислоты - ДНК и РНК, передающие генетическую информацию.

Другой класс полиэлектролитов - полиоснования.

Конфигурационные свойства полиоснований аналогичны свойствам поликислот. В частности, полиоснования, как и поликислоты, сильнее ионизованы в солевой форме.

Сочетание кислотных и основных групп в одной цепи приводит к образованию полиамфолитов, составляющих третий класс полиэлектролитов. Для каждого полиамфолита существует определенное, зависящее от его состава, значение pH, при котором количества положительных и отрицательных зарядов в цепи равны. Иными словами, суммарный заряд полиамфолита в этой изоэлектрической точке (ИЭТ) равен нулю. При pH ниже ИЭТ в цепи начинают доминировать положительные заряды. При достаточно низком pH ионизация всех кислотных групп оказывается подавленной и полиамфолит превращается в полиоснование. Наоборот, по мере повышения pH над ИЭТ полиамфолит постепенно превращается в поликислоту. Полиамфолиты играют огромную роль в природе: все белки относятся к полиамфолитам.

Размеры полииона в водных растворах сильно зависят от наличия кулоновских взаимодействий (отталкивания одноименно заряженных групп в макромолекуле и притяжения контрионов к полииону). Благодаря электростатическому отталкиванию между одноименно заряженными ионногенными группами макромолекула полиэлектролита стремиться развернуться и приобрести более асимметричную форму по сравнению с формой статистического клубка, характерной для незаряженных цепей. Поэтому в растворах полиионы имеют большие размеры и асимметрию.

Также размеры полииона сильно зависят от линейной плотности заряда. Разворачивание цепи проявляется в возрастании приведенной вязкости при уменьшении концентрации (полиэлектролитный эффект). Это объясняется тем, что при разбавлении растворов полиэлектролитов увеличивается объем, в котором распределяются контрионы, экранирующие кулоновское отталкивание между фиксированными зарядами полииона, вследствие чего возрастает их отталкивание и происходит развертывание полииона.

Конформация полиэлектролита определяется также наличием в растворе низкомолекулярных электролитов, например солей. Наличие таковых приводит к экранированию зарядов полииона. При значительных концентрациях (около 1 М), вклад кулоновских взаимодействий исчезает, и размеры цепей совпадают с размерами неоинногенных цепей той же природы.

Полиэлектролиты обладают способностью специфически связывать контрионы (образование ионных пар между заряженными группами полиэлектролита и контрионами, ионных тройников и более сложных комплексов). Теория Дебая-Хюккеля, строго говоря, неприменима к полиэлектролитам. Дело в том, что при не очень малых степенях ионизации электростатическое поле вокруг молекулы полиэлектролиты велико, его энергия в несколько раз больше тепловой.

Флори построил теорию на основе объемных эффектов. Электростатическое отталкивание приводит к набуханию клубка, зависящему от ионной силы. Флори предполагал, что клубок вместе с окружающим его растворителем электрически нейтрален. Расчет показывает, что электростатические взаимодействия не могут превратить клубок в вытянутую молекулу, происходит лишь набухание.

Птицын развил более строгую теорию. Основное предположение 0 из-за большего экранирующего действия контрионов заряженные группы макромолекулы, расположенные далеко друг от друга по цепи, взаимодействуют лишь при случайном сближении в результате флуктуационного изгибания цепи. Также, из этой теории следует, что конформационные свойства заряженных макромолекул промежуточны между свойствами ненабухших клубков и жестких стержней:

Макромолекула связывает контрионы. Поэтому полиион при взаимодействии с другими полиионами ведет себя как нейтральная система. Контрионы могут специфически связываться ионизованными группами полиэлектролита. Следует отличать это связывание, сводящееся к образованию солевых связей в фиксированных точках макромолекулы, от неспецифического связывания - образования ионной атмосферы. В солевой связи контрион находится на значительно меньшем расстоянии от полииона, чем то, на которое могут приблизиться подвижные контрионы.

В растворе достаточно сильно заряженных полиэлектролитов часть контрионов удерживается в непосредственной близости к полимерным цепям, эффективно нейтрализуя их заряд - это конденсация контрионов.

Для слабо заряженных полиэлектролитов выраженная конденсация происходит только в плохом растворителе (где блобы глобулярны) и является лавинообразным процессом, приводящим к практически полному осаждению контрионов на ?/p>