Гидродинамические характеристики стандартов полистиролсульфоната в растворах различной ионной силы

Дипломная работа - Химия

Другие дипломы по предмету Химия




?олекулах

.2 Полиэлектролитное набухание

Далее следует рассмотреть исследованное как экспериментально, так и теоретически так называемое полиэлектролитное набухание. Причина полиэлектролитного набухания - электростатическое отталкивание одноименно заряженных звеньев цепи, приводящее к развертыванию клубков и увеличению их линейных размеров. Поскольку о размерах макромолекул можно судить по характеристической вязкости [?], пропорциональной объему клубков, первые оценки полиэлектролитного набухания были произведены по измерениям [?] в зависимости от степени ионизации. Было показано, в частности, что при полной ионизации полиметакриловой кислоты [?] может возрасти на два порядка, чему соответствует увеличение линейных размеров клубков в 5-6 раз. Однако при этом сразу возникает вопрос, в какой степени полиэлектролитное набухание можно считать изотропным?

Одна из первых теорий эффекта полиэлектролитного набухания принадлежит А. Качальскому и Лифсону. Они полагали, что функция распределения расстояний между концами заряженной цепи имеет вид

где индекс 0 соответствует незаряженной цепи, а - электростатическая энергия цепи, вычисляемая как сумма энергий отталкивания всех пар заряженных звеньев. В первоначальном варианте теории, принадлежащем Качальскому, Кюнцле и В. Куну, экранирование электростатических взаимодействий, обусловленное образованием дебай-хюккелевской атмосферы противоионов вокруг заряженных групп цепи, не принималось во внимание. Основанием для подобного пренебрежения было следующее неправильное (как было установлено позже) допущение. Плотность атмосферы противоионов, характеризуемая параметром ? в теории Дебая-Хюккеля, определяется ионной силой раствора ?:

где

- заряд электрона, - валентность иона сорта , - число таких ионов в 1 см3, ? - диэлектрическая проницаемость раствора.

Если потенциальная энергия кулонова взаимодействия двух полностью изолированных ионов равна

то в среде, содержащей ионы противоположного знака (противоионы), благодаря образованию облака противоионов вокруг каждого иона энергия взаимодействия ослабевает и определяется выражением

Здесь - сумма вандерваальсовых радиусов ионов. Параметр ? имеет геометрический смысл обратной величины эффективного радиуса ионной атмосферы, определяя расстояние от иона, за пределом которого осуществляется полное экранирование взаимодействий.

Качальский, Кюнцле и Кун предположили, что при очень большом разбавлении множитель Дебая-Хюккеля можно принять равным единице, так как противоионы равномерно распределены в объеме раствора, тогда как заряды сосредоточены в малых дискретных областях, занятых макромолекулами. При этом экранирование действительно практически не должно иметь места, и при расчете можно пользоваться кулоновым потенциалом. Полагая, что - гауссова функция, они получили:

где - число ионногенных групп в макромолекуле, т.е. в случае гомополимеров степень полимеризации, а - степень ионизации, определяемая значением pH среды.

Это соотношение предсказывает анизотропное развертывание цепочек с переходом к практически полностью вытянутым конфигурациям. Предположение ?=0, сделанное при выводе этого уравнения, оказалось неверным потому, что на самом деле противоионы не распределены равномерно по объему раствора, а удерживаются электростатическим полем клубка. Кроме того, следует учитывать хотя и слабую, но все же конечную диссоциацию воды.

В теории полиэлектролитов рассматриваются две характеристические длины - радиус Бьеррума и радиус экранирования Дебая-Хюккеля . Радиус Бьеррума характеризует экранирующее действие растворителя. Радиус экранирования Дебая - Хюккеля - расстояние, на котором распространяется действие электрического поля отельного заряда, помещенного в среду, содержащую другие заряды. Здесь - элементарный заряд, - электрическая постоянная, - диэлектрическая проницаемость среды, - ионная сила раствора, - число -тых ионов в единице объема, - заряд -того иона в единицах .

Заряды, находящиеся на расстоянии вдоль цепи, вызывают дополнительное электростатическое близкодействие, которое приводит к повышению жесткости цепи на величину . Последняя зависит от линейной плотности заряда и ионной силы раствора.

.3 Вискозиметрия полиэлектролитов

Характеристическая вязкость является одной из самых широко используемых молекулярно-гидродинамических характеристик полимеров. Это объясняется ее информативностью, а также сравнительной простотой и доступностью метода.

.4 Сущность явления

Характеристическая вязкость раствора высокомолекулярного вещества [?] имеет размерность удельного объема и служит мерой дополнительных потерь энергии, связанных с вращением макромолекул в потоке.

Внутреннее трение или вязкость всякой жидкости проявляется в тех случаях, когда она находится в состоянии потока с отличным от нуля градиентом скорости. Простейший пример такого потока - ламинарный поток с постоянным градиентом скорости , направление которого нормально направлению скорости. Скорость жидкости при этом определяется выражениями

Чем больше внутреннее трение в жидкости, тем большее напряжение сдвига ? нужно приложить, чтобы поддерживать поток с заданным градиентом скорости . Посл?/p>