Ультраструктурные изменения костной ткани при огнестрельных ранениях и пути их коррекции

Диссертация - Медицина, физкультура, здравоохранение

Другие диссертации по предмету Медицина, физкультура, здравоохранение

?оллагена в остеобластах от момента начала сборки молекулы до включения его в структуру костного матрикса составляет около 35 часов. Молекулы проколлагена накапливаются в везикулах остеобластов и секретируются во внеклеточное пространство в виде тропоколлагена, молекулы которого при сборке фибрилл выстраивают параллельно расположенные цепи последовательно конец в конец и сторона к стороне таким образом, чтобы между головными и концевыми участками оставалась щель диаметром около 35 нм. Каждая молекула в цепи смещена относительно молекулы в соседней цепи на четверть ее длины, что морфологически определяется в виде поперечной исчерченности волокон. Этим достигается конструктивная прочность, упругость и эластичность соединения. Коллагеновая сеть, состоящая из многочисленных волокон, погружена в макромолекулярные агрегаты протеогликанов и тесно взаимодействует с межклеточным матриксом и кристаллическими молекулами гидроксиапатита, образуя прочную биомеханическую систему (Carneiro J., Leblond С. et al., 1959).

Необходимо отметить, что коллагеновые волокна в костной ткани имеют строго определенную ориентацию. В компактной части трубчатых костей коллагеновые волокна входят в состав концентрических костных пластинок остеона, вставочных пластин и костных трабекул. Как правило, в составе остеона коллагеновые волокна располагаются в виде концентрических слоев, расположенных под определенным углом друг к другу, что обеспечивает биомеханическую устойчивость системы (Хэм А., Кормак Д., 1983; Данилов Р.К., 2006; Аврунин с соавт., 2010).

Морфофункциональной единицей костной ткани является остеон (Гаверсова система). Гаверсова система во взрослой кости постоянно обновляется. Считается, что для формирования остеона и его минерализации в нормальных условиях необходимо не менее 130 дней, однако этот срок может значительно варьировать при старении, различных патологических состояниях, ведущих к нарушению нормального функционирования костной ткани (Демпстер Д.В., 2000). Процессы минерализации остеонов протекают параллельно процессам их деминерализации, что имеет важный биологический смысл (Belanger L.F., 1969). При этом всегда можно выделить несколько типов остеонов - зрелые (50-75%), развивающиеся (5-10%), дегенерирующие (10-20%), реконструирующиеся (5-10%) и нежизнеспособные (5-10%). Считается, что границы Гаверсовой системы, ограниченные линией цементации, у молодых, развивающихся и реконструирующихся, остеонов составляют 80-150 мкм, у зрелых - 120-300, а у инволюционирующих, дегенерирующих - менее 200 мкм. Эти данные необходимо учитывать при изучении тонкой структуры кости (Хэм А., Кормак Д., 1983; Гюнтер В.Э., с соавт., 1998; Barbos M.P. et al., 1983).

Таким образом, костная ткань является сложноорганизованной и постоянно обновляющейся системой организма, состоящей из клеточных элементов, окруженных костным матриксом, что необходимо учитывать для проведения исследований, так как только изучение всех её элементов в совокупности позволит в полной мере выявить закономерности её регенерации в норме и патологии.

 

1.2.2 Нанообъекты костной ткани

Исходя из стандартизированного определения, под нанообъектом понимается объект, содержащий структурные элементы, геометрические размеры которых, хотя бы в одном измерении, не превышают 100 нм, и, благодаря этому, обладающий качественно новыми свойствами, в том числе заданными функциональными и потребительскими характеристиками (Реестр ИСО НТК № 229 по нанотехнологиям).

Фундаментальной причиной выделения объектов в нанометровом диапазоне являются их особые размерные эффекты, среди которых наиболее важное методологическое значение имеют структурные и термодинамические изменения, фазовые изменения и квантовые ограничения (Глушко В.П. с соавт., 1978).

Изменение структурных свойств обусловлено тем, что при размерах меньше 10 нм изменяется межатомное расстояние в структурах и проявляется зависимость структурных параметров от него, а в некоторых случаях происходит и кардинальная перестройка наноструктуры частицы (Dubreuil N., et al., 1995).

Изменения термодинамических свойств обусловлены тем, что характерный размер наноструктуры играет роль дополнительного термодинамического фактора. Рост теплоемкости при уменьшении размера наночастиц приводит к снижению температуры плавления, при этом в диапазоне 1-10 нм в нанокристаллах стабилизируются высокотемпературные фазы, при этом может возникнуть и аморфизация поверхности. Эффект квантового ограничения особенно значим в ультратонких каналах, где влияние стенок на молекулы является столь сильным, что в их поведении появляется бимодальность. В итоге, вещества в ультратонких каналах, могут обладать и свойствами жидкостей (разупорядоченностью и подвижностью) и твердых фаз (анизотропией) (Габуда С.П. с соавт., 2005; Fritz M. et al., 1991; Chernoff E.A. et al., 1992; Gathercole L. et al., 1993).

С учетом вышеназванных стандартизированных критериев, был составлен перечень структур, классифицируемых как нанообъекты костной ткани (Гайдаш А.А. с соавт., 2008).

Учитывая размерный критерий, к плотным 1-мерным нанообъектам отнесены коллагеновые волокна 1 типа и кристаллизующиеся ортофосфаты.

К плотным 3-мерным нанообъектам - отнесены моно- и триклинные кристаллы гидроксиапатита.

К гетероморфным 1-мерным нанообъектам причислены протяженные нитчатые структуры внутреннего скелета клеток.

К гетероморфным 2-мерным нанообъектам - поверхностные структуры в интерфейсах вода-апатит, вода-коллаген и вода-апатит-коллаген.

К гетеромор