Ультраструктурные изменения костной ткани при огнестрельных ранениях и пути их коррекции

Диссертация - Медицина, физкультура, здравоохранение

Другие диссертации по предмету Медицина, физкультура, здравоохранение

?м, кальций-фосфатными соединениями (КФ) типа гидроксиапатита (ГАП), и другими микроэлементами (Mg, Sr, Sn, Со, Cr, Fe, Сu и др.). Она находится в динамическом равновесии за счет протекания единовременных процессов образования и резорбции (Мажуга П.М., 1978; Грант В., 1991; Кораго А.А., 1992; Чайкина М.В., 2002).

В настоящее время принято выделять два основных типа костной ткани: компактную и губчатую.

Губчатая кость, менее твердая, входит в состав большинства плоских костей, эктопических очагов костеобразования и костной мозоли на ранней стадии ее развития. Она состоит из сети трабекул (спикул), образующих большие костномозговые пространства, содержащие гемопоэтические клетки и жир. Трабекулы содержат остеоциты, окруженные монослоем остеобластов.

Компактная (плотная, ламеллярная) кость не содержит трабекул и образует диафизы всех трубчатых костей. Здесь имеется круговое расположение гаверсовых систем (Образцов И.Ф., Ханин М.Ф., 1989; Улумбеков Э.Г., Челышев Ю.А., 1997; Афанасьев Ю.И., Юрина Н.А., 1999).

Костная ткань состоит из клеточных элементов, представленных остеобластами, остеокластами и остеоцитами, и экстрацеллюлярного матрикса, который содержит органические и неорганические (минеральные) вещества и воду. Костные клетки функционируют в среде, получившей название костный матрикс. По своему качественному составу костный матрикс является видом соединительной ткани с выраженной минеральной составляющей (Хэм А., Кормак Д.,1983; Быков В.Л., 2000).

Ключевую роль в процессе минерализации костного матрикса играют матриксные пузырьки остеобластов, имеющие диаметр от 30 до 1000 нм и стенку, идентичную наружной мембране. Первоначально именно в них образуется аморфный Са3(РО4)2, а затем - гидроксиапатит (ГАП). Вышедшие в экстрацеллюлярное пространство матриксные пузырьки вступают во взаимодействие с протеогликанами, остеонектином и коллагеном, встраиваясь в их структуру (Кораго А.А, 1992; Anderson Y.C., 1976).

Остеобласты секретируют и наслаивают новый костный матрикс, располагаясь на поверхности уже существующего материала. Часть из них постепенно погружается в него, постепенно дифференцируясь в остеоциты. Остеобласты формируют новую костную ткань в виде концентрических слоев, в центре которых располагается кровеносный сосуд, образуя систему размером около 80-200 мкм, называемую остеоном (Фриденштейн А.Я., Лалыкина К.С., 1973; Хэм А., Кормак Д., 1983; Афанасьев Ю.И., Юрина Н.А., 1999).

Остеоциты находятся в замкнутых лакунах костного матрикса и не пролиферируют, но частично сохраняют способность продуцировать коллаген и протеогликаны. Между собой они соединены узкими каналами, через которые регулируются процессы минерализации костной ткани и скорость остеогенеза. Остеоциты играют большую роль в кругообороте костной ткани и кальция. Через массивные клеточно-матричные контакты они принимают активное участие в обмене ионов, а также выступают в роли механических биосенсоров, реагирующих на изменение нагрузки на костную ткань (Аврунин А.С. с соавт., 2010; Van der Plas A., Aarden E.M. et al., 1994).

В противоположность остеобластам и остеоцитам, которые образуют костный матрикс, остеокласты разрушают его с помощью специализированного мембранного комплекса (гофрированной каемки), посредством секреции кислот, растворяющих кристаллы гидроксиапатита, и различных ферментов типа коллагеназы и эластазы (Учитель И.Я. 1978; Kurihara N. et al.,1990; Girasole G. et al., 1992). Обычно остеокласты группируются и прокладывают глубокие туннели со скоростью около 50 мкм в сутки. Вслед за ними устремляются остеобласты, которые выстилают стенки каналов, а в сам канал прорастают сосуды и нервные окончания, через которые происходит доставка питательных веществ и кислорода к ткани. Остеокласты являются очень мобильными клетками, которые мигрируют и легко присоединяются к гидроксиапатиту с помощью молекул адгезии - интегринов (Маянский А.Н., 1991; Альбертс Б. с соавт., 1994; Marcus R. 1987; Nesbitt S.A. et al., 1993; Key L.L. et al., 1994; Wada S. et al., 1995).

Экстрацеллюлярный матрикс на 60% состоит из минеральных веществ (доминирует гидроксиапатит), на 30% - из органических субстанций (коллагеновые волокна - до 90-95%, протеогликаны, гликозаминогликаны, фибронектин, остеонектин и др.), и на 10% - из воды, находящейся в связанном и свободном состоянии. Внеклеточный матрикс костной ткани является результатом продукции остеобластов и остеокластов, на 95% состоит из коллагена преимущественно 1-го типа и неколлагеновых протеинов (5%), которые образуют единую структурно-функциональную систему. Различают минеральную (неорганическую) и неминеральную (органическую) составляющие внеклеточного вещества костной ткани (Альбертс С. с соавт., 1994; Улумбеков Э.Г., Челышев Ю.А., 1997).

Около 85% воды содержится в органической матрице вокруг волокон коллагена и основного вещества и в гидратной оболочке, окружающей кристаллы ГАП. Другие 15% находятся в каналах и полостях, по которым питательные вещества доставляются тканям кости. Вода придает упругие свойства костной ткани. В компактной кости содержится около 10% воды, а в губчатой - около 5-15% (Ньюман У. с соавт., 1961; Омельянченко Н.П. с соавт., 1997).

Основными химическими элементами неорганической части кости являются кальций и фосфор, составляющие 35 и 50%, соответственно. Именно они придают кости присущую ей плотность. Необходимо отметить, что в организме человека кость служит и резервуаром основных минералов, в частности кальция (98%), фосфора (85%), магния (50%) и натрия (45%). Остальные 15% приходятся на бикарбонаты, цитраты, фториды, различные соли и микроэлементы (Гайе