Теория машин и механизмов

Методическое пособие - Разное

Другие методички по предмету Разное

? центре качания:

  • точке К для коромысла 3, лежащей на расстоянии lО3К от оси вращения О3

,

где lО3S3 расстояние от оси вращения коромысла 3 до его центра тяжести, м.

  • для шатуна 2, отстоящей от линии действия силы инерции Ри2 на расстоянии

.

В шарнирах А и О3 прикладываем реакции R12 и R 03, раскладывая их на нормальные и касательные составляющие. Нормальные составляющие и направляем параллельно соответственно звеньям 3 и 2, касательные и перпендикулярно звеньям.

Рис. 12.1

Составляем уравнение моментов сил относительно точки В для второго звена (на рис. 12.1, б отмечаем плечи сил):

М2В(Рi) = 0;

Полученное отрицательное значение силы говорит о том, что направление силы следует изменить на противоположное, перечеркнув крестом на схеме исходный вектор.

Значения плеч взятых с чертежа, в уравнение моментов, можно подставлять в миллиметрах, т.к. уравнение не содержит моментов сил в чистом виде (Мi).

Составляем уравнение моментов сил относительно точки В для третьего звена

М3В (Рi) = 0;

Составляем векторное уравнение сил, действующих на группу Ассура, где неизвестные записываем в конце (нормальные составляющие реакций и ):

Рi = 0;

.

Производим графическое сложение векторов в масштабе Р (рис. 12.1, в). Последний вектор откладываем из полюса плана сил.

На плане получаем направления и значения сил в масштабе и . Векторно складывая касательные и нормальные составляющие, получаем абсолютные значения реакций (на рис. 12.1, в представлены пунктиром):

  • соединяя точки 1 и 2 получаем

    , , Н;

  • соединяя точки 3 и 2 получаем

    , , Н.

  • Для определения реакции в шарнире В следует векторно сложить все силы, действующие на звено 2 или 3, например, для звена 2

На рис. 12.1, в соединив точки 4 и 2, получаем направление действия реакции R32 коромысла 3 на шатун 2.

После рассмотрения условий равновесия группы Асура переходим к определению сил, действующих на начальный механизм.

 

Силовой анализ начального механизма

 

Строим кинематическую схему начального механизма в масштабе (рис. 12.1, г), в соответствующие точки прикладываем силы: инерции кривошипа 1 Ри1; веса кривошипа 1 G1; реакции в шарнирах (опорах) R21 - шатуна 2 на кривошип 1; R01 - стойки 0 на кривошип 1; уравновешивающую силу Ру.

Реакция шатуна 2 на коромысло 1, R21 определена при рассмотрении силового анализа группы Ассура (но там определена реакция кривошипа 1 на шатун 2, поэтому при приложении её необходимо изменить направление на противоположное);

Уравновешивающая сила Ру. (реакция двигателя на механизм), неизвестная величина, прикладывается в шарнире А перпендикулярно О1А.

Указываем плечи действия сил относительно шарнира О1 и составляем уравнение моментов всех сил относительно О1:

МО1(Рi)= 0;

.

Момент уравновешивающей силы (здесь rкр радиус кривошипа, м).

Реакцию в шарнире О1, R01, определяем из векторного уравнения равновесия всех сил, действующих на звено 1:

.

Строим план сил (рис. 12.1, д) в масштабе сил р, Н/мм, где замыкающий вектор определяет направление и величину опорной реакции R01, её значение .

 

Определение уравновешивающей силы методом Н.Е. Жуковского

 

При определении мощности двигателя и установлении его типа, расчете махового колеса, составлении характеристики регуляторов и в ряде других случаев необходимо знать только уравновешивающий момент или уравновешивающую силу, реакции в кинематических парах исследуемого механизма при этом могут остаться неизвестными. В этом случае удобнее использовать теорему Жуковского: если какой-либо механизм под действием системы сил, находится в состоянии равновесия, то повёрнутый на 90 в какую-либо сторону план скоростей, рассматриваемый как твёрдое тело, вращающееся вокруг полюса плана и нагруженное теми же силами, приложенными в соответствующие точки плана, также находится в равновесии.

Теорему Жуковского можно применить и к системе, не находящейся в равновесии. Для этого достаточно, кроме действующих сил приложить и силы инерции.

Для доказательства теоремы воспользуемся принципом возможных перемещений: если система находится в равновесии, то сумма элементарных работ на возможных перемещениях равна нулю (возможные перемещения это перемещения допускаемые связями):

,

или разделив на dt,

,

Получаем:

,

где Рi задаваемые силы; i скорости точек приложения Рi; j скорости вращения звеньев к которым приложены моменты сил Мj; Ni, Nj мощности соответственно сил Рi и моментов сил Мj.

Предположим, что в какой то точке звена приложена сила Рi перенесённая параллельно самой себе в соответствующую точку повёрнутого на 90 плана скоростей. Мощность этой силы можно выразить следующим образом:

,