Теория машин и механизмов

Методическое пособие - Разное

Другие методички по предмету Разное

> x1) и x = x2 - x1, тогда кинетическая энергия системы

,

а потенциальная

.

То есть в системе с виброизолятором только часть работы внешней силы расходуется на изменение кинетической энергии. Часть этой работы переходит в потенциальную энергию упругого элемента, и часть рассеивается демпфером (переходит в тепло и рассеивается в окружающей среде).

Уравнения движения:

,

.

Решение этой системы уравнений подробно рассматривается в курсе теории колебаний, поэтому ограничимся только анализом амплитудно-частотной характеристики (рис. 15.6). Характеристику построим в относительных координатах xотн = x/xст , где xст - статическая деформация упругого элемента.

 

k2 > k1

k1

xотн

k2 Область

эффективности

виброизолятора

 

1

 

 

0 , рад/с

Рис. 15.6

 

 

Динамическое гашение колебаний

 

Динамические гасители или антивибраторы широко применяются в машинах работающих в установившихся режимах для отстройки от резонансных частот (например, в судовых двигателях внутреннего сгорания). Динамические гасители могут быть выполнены в виде упругого или физического маятника. Рассмотрим простейший линейный упругий динамический гаситель (рис. 15.7). Принцип действия динамического гасителя заключается в создании гасителем силы направленной противоположно возмущающей силе. Настройка динамического гасителя заключается в подборе его собственной частоты: собственная частота гасителя должна быть равна частоте тех колебаний, амплитуду которых необходимо уменьшить (погасить):

,

где собственная частота гасителя, mг масса гасителя, сг жесткость пружины гасителя.

Уравнения движения системы с динамическим гасителем, схема которого изображена на рис. 15.7 имеют вид:

 

 

 

0 с

Р2 = R20 sin t

1

 

 

x1

m1

cгkг

 

г mг

 

 

 

xг

 

Рис. 15. 7

,

,

где x = x - xг - деформация пружины гасителя.

На рис. 15.8 приведены амплитудно-частотные характеристики этой системы без динамического гасителя и с динамическим гасителем. Как видно из этих характеристик, при установке динамического гасителя амплитуда на частоте настройки резко снижается, однако в системе вместо одной собственной частоты возникает две. Поэтому динамические гасители эффективны только в узком диапазоне частот вблизи частоты настройки гасителя. Изображенные на рисунке кривые 1 и 2 относятся к динамическому гасителю без демпфирования. При наличии в системе демпферов форма кривой изменяется (кривая 3): амплитуды в зонах гашения увеличиваются, а зонах резонанса - уменьшаются.

2

xотн 1

 

 

Области

эффективности

динамического

3 гасителя

 

 

1

 

 

0 01 0 02 , рад/с

Рис. 15.8

 

Контрольные вопросы

 

  1. Статическое и динамическое уравновешивание при проектировании деталей.
  2. В чем различие между виброгашением и виброизоляцией.
  3. Сущность подрессоривания, или виброизоляции.
  4. Динамическое гашение колебаний.

 

Лекция 16

 

Трение в кинематических парах. Трение скольжения: сила трения, угол и конус трения, движение на горизонтальной плоскости, трение на наклонной плоскости, трение клинчатого ползуна, трение во вращательных парах, трение в пятах.

 

 

Трение в кинематических парах

 

Явление трения имеет место всегда, когда любые тела твёрдые, жидкие или газообразные, находящиеся в соприкосновении одно с другим, движутся относительно друг друга, или подвергаются воздействию сил, стремящихся вызвать их относительное движение.

Трение в машинах играет весьма существенную роль. В передаточных механизмах фрикционных, ременных и др. за счет силы трения осуществляется передача движения от ведущего звена к ведомому. В других случаях трение нежелательно, так как оно препятствует движению и на преодоление сил трения затрачивается значительная часть работы движущих сил так называется работа сил вредных сопротивлений.

Трение вызывает износ трущихся частей машины, что существенно препятствует повышению скоростей движения, а следовательно и производительности машин.

В дальнейшем мы будем иметь в виду трение только на поверхностях соприкасающихся твёрдых тел. Способность контактирующих поверхностей звеньев сопротивляться их относительному движению называется внешним трением.

Трение обусловлено неидеальным состоянием контактирующих поверхностей (микронеровности, загрязнения, окисные пленки и т.п.) и силами межмолекулярного сцепления.

Опыт показывает, что при относительном движении двух соприкасающихся твёрдых тел, прижатых одно к другому некоторой силой, на поверхности соприкосновения действует сила, сопротивля?/p>