Расчет квантово-химических параметров ФАВ и определение зависимости "структура-активность" на примере сульфаниламидов
Дипломная работа - Химия
Другие дипломы по предмету Химия
ulsant
0.421 0.062 Teratogen
0.361 0.008 Antidiabetic symptomatic
0.377 0.035 Cardioprotectant
0.336 0.012 Benzodiazepine agonist partial
0.362 0.052 Spasmolytic, urinary
0.364 0.060 Analeptic
0.360 0.060 Nootropic
0.305 0.008 Uterine Relaxant
0.375 0.086 Septic shock treatment
0.385 0.102 Platelet adhesion inhibitor
В случае существенной по отношению к соединениям обучающей выборки новизны химической структуры прогнозируемого вещества (более 3-х дескрипторов ни разу не встретились в обучающей выборке) результаты прогноза могут иметь значительную погрешность. В этом случае целесообразно протестировать вещество на требуемые виды активности независимо от результатов прогноза, так как результатом может оказаться принципиально новая базовая структура.
В некоторых случаях вещество прогнозируется одновременно как агонист и антагонист (стимулятор и блокатор, активатор и ингибитор) по отношению к одним и тем же рецепторам (ферментам и т.п.). Это означает, что система не может дифференцировать внутреннюю активность вещества, а лишь указывает на его способность к связыванию с данным рецептором (ферментом).
И, наконец, необходимо иметь в виду, что система PASS C&T не может предсказать, станет ли конкретное вещество лекарственным препаратом, поскольку это будет зависеть также от многих других факторов (сравнительной оценки безопасности и клинической эффективности; наличия необходимых для разработки и внедрения инвестиций, и т.д.). Прогноз, однако, может помочь определить, какие тесты наиболее адекватны для изучения биологической активности конкретного химического вещества, и какие вещества из имеющихся в распоряжении исследователя наиболее вероятно проявят требуемые эффекты. [19]
1.3 Вывод
В этом и предыдущем разделах было дано краткое описание использовавшихся и используемых квантовохимических методов. Более детальное знакомство с ними практически не требуется для решения практических задач. Это связано с тем, что на основе анализа приближений, сделанных при разработке того или иного квановохимического метода, как правило, не удается установить область его применения и очертить круг задач, которые можно решить с его помощью. К сожалению, многие квантовохимические методы, которые лучше обоснованы с теоретической точки зрения, на практике дают плохие результаты и поэтому не применяются, а более грубые модели с удачно подобранными параметрами широко используются. Это связано с тем, что в любом квантовохимическом методе сделано достаточно много различных приближений. В некоторых методах ошибки, к которым приводят эти приближения, частично компенсируют друг друга и в результате получается хорошее согласие с экспериментом. Сказать заранее, будет или не будет иметь место такая компенсация нельзя, поэтому выяснить область применения и охарактеризовать точность конкретного метода можно лишь на основе численного эксперимента и систематизации опубликованного расчетного материала.
Глава 2. ВЫЧИСЛЕНИЕ ГЕОМЕТРИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
2.1 Квантовохимические методы расчета
Данные статистического анализа результатов квантовохимических расчетов геометрических параметров стабильных органических молекул небольшого размера, содержащих одинарные и кратные связи, приведены в таблице 1.1 приложения А, показано, с какой точностью можно рассчитать геометрию молекул неэмпирическим методом и как меняются результаты расчетов в зависимости от выбора базиса. Обращает на себя внимание хорошее согласие с экспериментом, которое получается при использовании минимального и валентно - расщепленных базисов.
Сложнее обстоит дело с расчетом валентных углов. Если у молекулы нет неподеленных электронных пар, то расчет в валентно - расщепленном базисе приводит к хорошему согласию с экспериментом, но для расчета валентных углов в молекулах с неподеленными электронными парами в базис необходимо включить поляризационные орбитали.
Наряду с неэмпирическими методами для вычисления геометрии органических молекул широко используются и полуэмпирические методы. Среди них наиболее точные результаты для большинства типов соединений дают методы АМ1, МПДП и МЧПДП/3. Методом МПДП получается хорошее согласие с экспериментом практически для всех геометрических параметров молекул (см. табл. 1.2 приложение А).
2.1.1 Расчет потенциалов ионизации
Потенциалы ионизации органических молекул обычно вычисляют по теореме Купманса, которая связывает ПИ электрона с энергией хартри фоковской орбитали исходной молекулы с замкнутой оболочкой. Для большинства соединений расчеты в этом приближении дают удовлетворительное согласие с экспериментальными вертикальными ПИ и поэтому широко используются для интерпретации данных фотоэлектронной спектроскопии. Кроме того, расчеты ПИ оп теореме Купманса используются для изучения реакционной способности некоторых органических соединений.
Наибольшее количество опубликованных расчетов ПИ выполнено методами МЧПДП/3 и МПДП. В таблице 1.3 приложения А приведены результаты расчетов ПИ методом МПДП.
Основное правило при расчете ПИ: если верхняя занятая молекулярная орбиталь у молекулы вырождена или почти вырождена, то механические деформации, которые снижают симметрию молекулы и снимают вырождение, приводят к уменьшению ее ПИ.
2.1.2 Расчет индексов реакционной способности
Энергию межмолекулярного взаимодействия при сближении реагентов можно условно разбить на вклады трех типов: кулоновские, орбитальные и стерические.