Расчет квантово-химических параметров ФАВ и определение зависимости "структура-активность" на примере сульфаниламидов

Дипломная работа - Химия

Другие дипломы по предмету Химия



дят собственные (возможные) значения параметра Е и соответствующие ему решения собственные функции.

Для любого уравнения Шредингера, соответствующего конкретной системе, существует бесконечное множество значений параметра Е. Эти значения могут быть как непрерывными (для свободно движущейся частицы), так и дискретными, если частицы локализованы в малой области пространства. Дискретные значения Е называют уровнями энергии.

Пользуясь операторной символикой, можно записать уравнение Шредингера в сокращенной форме:

H? = Е?,

где H = - оператор Гамильтона или гамильтониан системы частиц.

1970 - 1980-е годы были временем очень быстрого развития вычислительных методов квантовой химии. В результате появилась возможность рассчитывать геометрию и оценивать стабильность промежуточных продуктов и переходных состояний, а также вычислять профили поверхности потенциальной энергии вдоль координаты реакции. Экспериментальное получение подобной информации для большинства реакций связано с преодолением значительных трудностей, вызванных многостадийным характером процессов, синхронным протеканием отдельных элементарных стадий и очень малым временем жизни промежуточных продуктов. Развитие вычислительных методов квантовой химии и появление быстродействующих ЭВМ позволили рассчитывать многие характеристики органических соединений, в том числе и нестабильных, а также переходных состояний. Точность этих расчетов получается вполне удовлетворительной по термохимическим стандартам. Поэтому квантовохимические расчеты в настоящее время используются в качестве одного из физико-химических методов исследования для получения данных, необходимых для установления механизмов сложных органических реакций.

Существующие методы математического моделирования "структура- активность" могут быть условно разделены на три группы.

Первая группа основана на использовании принципа линейности свободных энергий и включает в себя такие подходы, как метод Хэнча, метод Кубиньи и "диффузионный подход".

К этой же группе причисляют аддитивно- статистические методы Фри - Уилсона, Фуйита - Бана, Каммарата - Яу и им подобные. Для построения моделей, реализующих принцип линейности свободных энергий, используются методы регрессионного анализа.

Вторая группа объединяет методы, предназначенные для получения первоначальных представлений об изучаемом явлении посредством статистической обработки всей имеющейся информации, а также преобразования ее к виду, удобному для дальнейшего использования. Эта группа методов иногда называется методами "генерации гипотез". Она объединяет такие методы, как факторный анализ во всех его модификациях, методы линейного отображения, иногда к этой группе относят и аддитивно- статистические методы.

В третью группу включают методы, основанные на использовании алгоритмов теории распознавания образов, предназначенные для классификации объектов посредством разнообразных статистических и эвристических процедур. К этой группе относят различные методы дискриминантного анализа, порогового логического элемента и его модификации, методы теории алгебры логики.

1.1.1 Различие неэмпирических и полуэмпирических методов

На практике обычно пользуются как полуэмпирическими, так и неэмпирическими методами. Они различаются методикой вычисления матричных элементов, описывающих взаимодействие электронов между собой и электронов и атомных ядер в уравнениях. В полуэмпирических методах для этой цели используются приближенные эмпирические формулы и известные из эксперимента параметры атомов. В неэмпирических методах проводится непосредственный аналитический расчет матричных элементов.

Полуэмпирические расчеты в 80 - 90 годы чаще всего проводились в валентных приближениях ППДП, ЧПДП и ПДДП, ППДП/2, ППДП/БУ, МЧПДП, МПДП, АМ1 [6, 7, 8].

Характерными особенностями всех полуэмпирических методов являются следующие.

Некоторые группы электронов явным образом не рассматриваются. Например, в расчете могут учитываться только валентные электроны (валентное приближение) или только П - электроны (П- электронное приближение).

Некоторые члены гамильтониана не учитываются или выражаются через какие - либо эмпирические параметры.

Ряд интегралов, необходимых для расчета электронной энергии, либо принимается равным нулю, либо выражается через другие интегралы или эмпирические параметры.

Очевидно, что приближения полуэмпирических методов не могут быть произвольными. Основные положения, взаимодействия и эффекты, точно учитываемые в неэмпирических подходах, должны сохранятся и в полуэмпирических методах МО ЛКАО. С этой точки зрения возможен ряд уровней приближения.

Приближения, приводящие к тому, что результаты расчетов становятся неинвариантными относительно как вращения координатных осей, так и гибридизации АО.

Приближения, которые сохраняют инвариантность относительно вращения координатных осей, но нарушают инвариантность по гибридизации АО.

Приближения, инвариантные и относительно вращения координатных осей, и относительно гибридизации АО.

Приближения, сохраняющие инвариантность расчета при любых ортогональных преобразованиях базиса АО.

В неэмпирических методах все матричные элементы взаимодействия электронов и атомных ядер и электронов между собой вычисляются с помощью аналитического расчета необходимых интегралов в некотором бази