Расчет квантово-химических параметров ФАВ и определение зависимости "структура-активность" на примере сульфаниламидов

Дипломная работа - Химия

Другие дипломы по предмету Химия



LUMО (б) молекулы этилена, рассчитанных расширенным методом Хюккеля в программе HyperChem 7.0.

Подобный подход хорошо работает при расчете систем с относительно равномерным распределением заряда, например углеводородов, для которых он и был первоначально использован. Однако даже и в таких случаях бывают казусы. Например, в соответствии с предсказанием расчета, бензол должен распадаться на три молекулы ацетилена с выделением значительного количества теплоты. Что касается систем, содержащих гетероатомы, то для них более адекватным является интегративный расширенный метод Хюккеля. В этом методе уже учитывается зависимость гамильтониана от заряда на данном центре, причем зависимость полагается линейной.

1.2 Современные методы анализа структура вещества проявляемая физиологическая активность

1.2.1 Принципы распознавания образов

Одна из основных предпосылок методов конструирования лекарств предположение о том, что соединения сходной структуры имеют сходные типы биологической активности. Очень трудно дать строгое определение понятия структурного сходства, о чем свидетельствует обилие и разнообразие параметров, используемых при выводе эмпирических соотношений, связывающих структуру соединений с их биологической активностью. До сих пор наиболее распространенным методом чтения координат и методом построения таких соотношений был регрессионный анализ. Целью этого подхода является построение эмпирических соотношений, связывающих различные сочетания физических, химических или структурных параметров с биологической реакцией соединения. Этот метод особенно эффективен при исследовании не слишком длинных гомологических рядов соединений.

Методам распознавания образов посвящено множество монографий [16]. Этот факт, несомненно, является отражением широкой применимости методов распознавания. Применение методов распознавания образов к химическим задачам началось в середине 1960-х годов в связи с масс-спектральными исследованиями. После этого аналогичные работы стали проводиться во многих других областях химии.

Одна из интересных особенностей этих методов заключается в том, что они могут иметь дело с многомерными данными, т. е. данными, в которых для представления каждого объекта используется более трех параметров. К тому же этими методами можно анализировать данные, полученные из разных источников, а также данные, связи между которыми имеют разрывный характер. При соответствующем подходе методы распознавания образов дают возможность установить критерий отбора из исходного множества данных тех параметров, которые существенны для описания исследуемых свойств. Далее с помощью этого набора наиболее значимых признаков могут быть получены указания о направлении дальнейших исследований.

1.2.2 Основные понятия методов распознавания образов

Прежде чем начать обсуждение методов распознавания образов, необходимо объяснить, что подразумевается под классификацией объекта или группы объектов. В процессе классификации формируется правило разделения группы объектов на несколько категорий, а при распознавании это классификационное правило используется для отнесения неизвестного объекта к одной из рассматриваемых категорий. Классификационное правило устанавливается в виде некоторой гипотезы, полученной в результате анализа экспериментальных данных. Проверка правильности этой гипотезы проводится путем ее испытания на объектах, не включенных в группу данных, с помощью которых было получено классификационное правило. В случае удачных испытаний гипотеза считается правильной. Процесс классификации заключается не только в выработке классификационного правила и его дальнейшего применения для распознавания. Ниже на простом примере будут продемонстрированы основные особенности задачи распознавания образов.

В качестве примера построения классификационного правила рассмотрим следующую воображаемую задачу. Предположим, что мы хотим автоматизировать процесс идентификации аномальных клеток при анализе крови в клинической лаборатории. Попробуем составить опытный проект оптической воспринимающей системы, способной отличить лейкимические клетки от здоровых на основе оптической проницаемости (рис. 2.1.1). Будем считать, что если прозрачность клетки превосходит некоторый уровень Хо, то она относится к лейкемическим клеткам.

Рисунок 2.1.1 Схема оптической системы распознавания образов

Поскольку надежность такой классификации слишком низка, необходимо искать дополнительные признаки, которые могли бы оказаться полезными при различении разных типов клеток. Предположим, что лейкимические клетки имеют более ярко выраженную клеточную структуру, чем нормальные. В этом случае можно настроить камеру на измерение контрастности образцов и таким образом получить характеристику структурированности для каждой клетки эталонного набора образцов. В результате получим двумерную диаграмму, показанную на рис. 2.1.2

Цель методов отбора признаков добиться наибольшего эффекта наименьшим числом признаков. Сокращение количества необходимых признаков облегчает процедуру классификации и в некоторых случаях увеличивает надежность результатов.

Рисунок 2.1.2 Разделение образов клеток на два класса в пространстве двух признаков структурированности и прозрачности клеток.

Вся процедура распознавания образов складывается из трех последовательны