Разработка единого системного подхода к решению задачи оптимального оценивания
Дипломная работа - Компьютеры, программирование
Другие дипломы по предмету Компьютеры, программирование
ледуя [16], введем понятие регулярности (правильности) математической постановки задачи оценивания. Задачу будем считать регулярной, если в рамках принятой математической постановки существует единственное решение этой задачи с требуемыми предельными свойствами по объему выборки измерений.
Рассмотрим математическую постановку задачи оценивания в рамках системного подхода, т.е. с учетом структурных взаимосвязей, существующих между элементами задачи.
.2 Основные элементы задачи. Условия регулярности
Пусть известно, что оцениваемый процесс (вектор состояния) на отрезке времени [t0, T] характеризуется вектором . Для описания данного процесса воспользуемся приближенной математической моделью G. В отличие от вектор состояния, соответствующий модели G, будем обозначать через .
К модели G предъявляются следующие требования:
модель G должна однозначным образом описывать оцениваемый процесс;
модель G должна в некотором смысле наиболее точно описывать оцениваемый процесс (адекватность модели);
модель G должна быть достаточно простой в вычислительном отношении.
Функциональное соответствие между вектором состояния и вектором измеряемых параметров у задается математической моделью S. В большинстве случаев
(1.1)
Поскольку погрешности, возникающие при задании модели S, незначительны, то считаем, что вектор действительных измеряемых параметров определяется в соответствии с уравнением
.(1.2)
Для полного описания условий функционирования системы обработки измерительной информации, характеризующих способ комбинации ошибок измерений с измеряемыми параметрами и вероятностные характеристики ошибок измерений, используется модель Q. В простейшем случае данной модели отвечает следующее функциональное соответствие:
(1.3)
где - вектор результатов измерений; h - вектор ошибок измерений.
Измерения на отрезке времени могут производиться как в дискретные моменты времени ti, , так и непрерывно В первом случае qK-мерный вектор ошибок измерений
полностью характеризуется плотностью вероятности р(h). Если плотность вероятности р(h) является гауссовской, то будем писать
где - вектор математических ожиданий ошибок измерений и Kh - ковариационная матрица. Во втором случае (непрерывное наблюдение) случайный процесс h = h(t) характеризуется соответствующим функционалом плотности вероятности.
Следующим элементом задачи оценивания является критерий качества К. Наибольшее распространение в настоящее время получил критерий минимума среднего риска (байесов критерий). Данный критерий применяется в условиях полной априорной определенности. Если же априорное распределение неизвестно, используются другие критерии: минимума условного риска, максимального правдоподобия, минимаксный.
Полагаем, что система обработки измерительной информации характеризуется нерандомизированным решающим правилом когда устанавливается детерминированная функциональная связь между оценкой и вектором измерений .
Условным риском называют риск , усредненный по условному распределению т.е. по функции правдоподобия
(1.4)
Важным является понятие апостериорного риска, т.е. риска , усредненного по апостериорной плотности вероятности:
(1.5)
где k - нормировочный коэффициент.
Апостериорный риск определяется как
(1.6)
Средний риск, т.е. риск, усредненный по и , связан с апостериорным риском простой зависимостью
(1.7)
Отсюда следует, что байесов критерий оптимальности - критерий минимума среднего риска - эквивалентен критерию минимума апостериорного риска. Это означает, что оптимальный байесов алгоритм должен выбираться из условия минимизации функционала
(1.8)
т.е.
(1.9)
Конкретный алгоритм зависит от выбранной функции потерь , которая задает меру отклонения получаемого решения от истинного. Очевидно, что функция потерь и риск должны отвечать ряду свойств, при которых обеспечивается корректность применения байесова критерия оптимальности.
1.3 Адекватность моделей задачи оценивания
Условие адекватности определяет некоторое отношение на множестве математических моделей. Введем в рассмотрение метрическое пространство непрерывных на отрезке [t0, T] вектор-функций , расстояние в котором между элементами
и
некоторой неотрицательной действительной функцией . В практике оценивания наиболее распространено расстояние
(1.10)
которое, как известно, приводит к метрическому пространству, не являющемуся полным. Полное метрическое пространство получится в том случае, если в ввести расстояние по формуле
(1.11)
Предпочтение на практике отдается метрическому пространству с расстоянием (1.10), несмотря на то, что оно не является полным. Данное расстояние может использоваться в качестве меры близости между R и G (где R и G - соответственно реальное и модельное поведение сигнала). С его помощью вводятся важные понятия математической модели G, локально или глобально ?-адекватной реальному полезному сигналу. Величина ? представляет собой среднеквадратическое расстояние между реальным процессом и его моделью. Она может быть назначена из чисто физических соображений или получена путем расчета.
По аналогии с вводится метрическое пространств