Применение теории массового обслуживания в исследовании рынка

Дипломная работа - Менеджмент

Другие дипломы по предмету Менеджмент



ление последствий воздействия на объект и принятие правильного решения;

эффективность управления объектом или процессом.

Определение цели моделирования позволяет четко установить, какие данные являются исходными, какие - несущественны в процессе моделирования и что требуется получить на выходе.

Разрабатываются модели в следствии нескольких причин:

оригинала может не существовать в настоящем;

оригинал может иметь много свойств и взаимосвязей;

на модели можно изучать только интересующие исследователя свойства;

оригинал может быть очень больших или очень маленьких размеров.

Моделирование является одним из ключевых видов деятельности человека и всегда в той или иной форме предшествует другим ее видам. Прежде чем браться за любую работу, нужно четко представлять себе отправной и конечный пункты деятельности, а также ее примерные этапы. То же можно сказать о моделировании.

Построение модели позволяет обоснованно принимать решения по усовершенствованию имеющихся объектов и созданию новых, изменению процессов управления ими и, в конечном iете, изменению окружающего нас мира в лучшую сторону.

Моделирование - творческий процесс, и поэтому заключить его в формальные рамки очень трудно. Но все же выделяют несколько этапов процесса моделирования:

. Постановка задачи (описание задачи, выделение цели моделирования, формализация задачи).

. Разработка модели (построение информационной и компьютерной модели).

. Компьютерный эксперимент (составление плана эксперимента и проведение исследования).

. Анализ результатов моделирования.

Если результаты не соответствуют цели, то возможно возвращение ко всем этапам заново.

Каждый раз при решении конкретной задачи эта схема может подвергаться некоторым изменениям: какой-то блок может быть исключен или усовершенствован, какой-то - добавлен. Все этапы определяются поставленной задачей и целями моделирования.

Имитационное моделирование применяется для исследования и проектирования таких сложных систем и процессов, как предприятия, информационные сети, мировое развитие процессов в экономике или экологии и т.д. То есть, имитационное моделирование применяется для имитирования какой-либо реальности, процессов, происходящих в действительности с какими-либо системами.

Имитационная модель системы - это программа, в которой определяются все наиболее существенные элементы и связи в системе и задаются начальные значения параметров, соответствующие некоторому "нулевому" моменту времени, а все последующие изменения, происходящие в системе, вычисляются на ЭВМ автоматически при выполнении программы.

Для того чтобы построить имитационную модель какой-либо системы, необходимо написать программу. Для этого нужно задать начальные значения параметров системы на момент начала моделирования ("нулевой" момент времени), а также описать все наиболее существенные элементы системы и связи между ними. В соответствии с этой программой компьютер сам вычислит все изменения параметров системы и выдаст результат.

Такой метод моделирования не требует составления уравнений и, тем более, не требует их решения. При этом он позволяет отображать и исследовать поведение системы с любой точностью. Причем все это делается автоматически программой.

Выполнение имитационной модели называется имитационным экспериментом.

В ходе имитационного эксперимента компьютер имитирует функционирование системы и вычисляет все необходимые характеристики свойств, проявляемых системой.

В отличие от натурного эксперимента (другими словами - настоящего, реального) имитационный эксперимент позволяет экспериментировать с системами, которых еще или уже нет, позволяет предсказывать поведение существующих систем в будущем, изучать их поведение в чрезвычайных условиях. Он дешевле и быстрее натурных экспериментов.

По характеру возможных изменений переменных величин модели подразделяются на непрерывные и дискретные.

В непрерывных моделях величины представляют собой непрерывные функции времени, а в дискретных моделях любые изменения происходят мгновенно, скачкообразно, и между моментами изменений состояний элементов остаются постоянными.

Реальные системы не бывают непрерывными или дискретными. Просто для одних систем удобнее применять непрерывные модели, для других - дискретные.

Представления о дискретности и непрерывности выработаны в рамках математики. Значит, когда мы говорим, что некоторая модель является дискретной, то тем самым уже имеем в виду не реальную систему, существующую в физическом мире, а некую математическую модель. Но в то же время любой физический объект или процесс мы можем описывать и моделировать как непрерывный или как дискретный. И какой вариант мы бы ни избрали, мы можем достичь любой точности описания

Например, речь человека можно описать в виде текста, то есть дискретной моделью. Можно записать речь как непрерывную звуковую волну, то есть как непрерывную функцию времени. Затем можно эту же звуковую волну оцифровать, то есть вновь представить дискретной моделью, и такая модель будет не менее точной, чем непрерывная.

Рассмотрим теперь, как соотносятся модели математические и компьютерные.

При моделировании реальных систем мы вначале составляем некоторое представление о реальной системе, достаточно точное. Это значит, что мы формируем математическую модель системы. Затем эту математическую модель мы