Информация по предмету Радиоэлектроника

  • 221. Проект реконструкции станционных сооружений ГТС
    Другое Радиоэлектроника

    Третье поколение систем коммутации - квазиэлектронные и электронные телефонные станции. Квазиэлектронные станции устранили ряд недостатков присущих АТС ДШ и АТС КУ и используются во многих странах мира. Создание же полностью электронных систем стало возможным лишь после применения в них принципа коммутации информации в цифровом виде (импульсно кодовая модуляция). Цель создания нового поколения коммутационной техники на основе цифровых систем передачи (ЦСП) заключается в повышении гибкости и экономичности системы, сокращение затрат и трудоемкости эксплуатации, упрощение и удешевление в производстве, а так же предоставление новых видов услуг абонентам.

  • 222. Проектирование бесконтактного магнитного реле
    Другое Радиоэлектроника

    БМР имеет этажерочную конструкцию. Сердечники с обмотками устанавливаются на стальное шасси . Между БМР и шасси, а также между БМР и трансформатором предусмотрены карболитовые детали и . Сердечники БМР и трансформатора ( и ) помещаются в текстолитовые каркасы и , поверх которых наматываются обмотки, соответственно рабочие и сетевая. В БМР поверх рабочих обмоток на оба сердечника наматываются обмотки постоянного тока . Поверх сетевой обмотки трансформатора наматываются рабочая и обмотка смещения . Трансформатор и БМР крепятся на шасси при помощи латунного болта . Также на шасси устанавливается разъем . К внутренней стороне стальной лицевой панели ( ) крепится печатная плата ( ) с элементами: подстроечными резисторами и соответственно цепей обратной связи и смещения, а также постоянными ограничительными резисторами и соответственно цепей обратной связи и смещения . также на плате припаивается конденсатор фильтр цепи смещения , диодная сборка , и диоды рабочей цепи и . На внешней стороне лицевой панели расположена ручка . На лицевой панели предусмотрены отверстия для отвертки, необходимые для настройки БМР.

  • 223. ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СВЧ ИНТЕГРАЛЬНЫХ УСТРОЙСТВ
    Другое Радиоэлектроника

    Система автоматизирует решение следующих задач: технологический анализ чертежа с определением возможности обработки данной детали в условиях функционирования ГПС конкретной конфигурации; выбор рациональных видов и способов получения заготовки; компоновку ТП по этапам, выделение множества элементов, обрабатываемых на каждом этапе, и сравнение вариантов принципиальных схем ТП по экономическим критериям; выбор оборудования для выполнения каждого этапа; выбор маршрута обработки детали внутри этапа ТП; выбор системы оборудования и закрепления заготовки и модели оборудования на каждой операции; проектирование вариантов общего маршрута ТП с объединением операций по общности обрабатываемых элементов и поверхностей вращения, принятых в качестве баз; проведение размерного анализа для элементов поверхности вращения с учетом принятых в качестве баз или с учетом принятых в качестве баз плоскостей и требований взаимного расположения; назначение и анализ определенных линейных размеров с минимизацией состава технологических размерных цепей, замыкающими звеньями которых служат конструкторские размеры и припуски; определение излишеств, допусков и отклонений операционных линейных размеров посредством технологического размерного анализа, который в ходе проектирования маршрута изготовления детали обеспечивает назначение операционных размеров и оценку возможности их реализации на настроенном оборудовании автоматически; формирование инструментальных наладок и составление расчетно-технологических карт для операции, на которых применяются станки с ЧПУ; расчет режимов обработки и норм времени по операциям ТП; расчет себестоимости изготовления детали по вариантам и выбор из них варианта, имеющего минимальную себестоимость при заданной производительности; проектирование и выпуск управляющих программ для станков с ЧПУ с использованием САПР, например типа «Техран»; расчет накладок управляющих кулачков для токарно-револьверных автоматов с использованием систем RAKTA, RASKUL; печать технологической документации (маршрутных и операционных карт).

  • 224. Проектирование канала сбора аналоговых данных микропроцессорной системы
    Другое Радиоэлектроника
  • 225. Проектирование командно-измерительной радиолинии системы управления летательным аппаратом
    Другое Радиоэлектроника

    Определение необходимых полос пропускания фильтров в приемном тракте

    • Полосовой ограничитель должен пропускать сигнал КИМ-ФМн. В спектре сигнала UД(t) после синхронного детектора сигнал расположен вблизи частоты 47,06кГц и занимает полосу примерно (4…5)/ТПС=1кГц. При нестабильности частоты 10-5 от номинала частотный сдвиг не превысит 500Гц. Следовательно, полосовой ограничитель должен быть настроен на частоту 47,06кГц и иметь полосу пропускания около 1кГц.
    • ФНЧ канала синхронизации выделяет синхросигнал. Считая, что полоса занимаемых частот соответствует примерно 12FТ, находим необходимую полосу фильтра в 142кГц.
    • Высокочастотный преобразователь приемного тракта должен пропустить достаточное число полезных компонент сигнала, т.е. иметь полосу не менее 12FТ, к этому надо добавить нестабильность несущей (10кГц). Следовательно, полоса должна быть порядка 2(142+10)кГц= =300кГц. Эта же величина определяет занимаемый радиолинией диапазон частот.
  • 226. Проектирование лог. ключа в n-МОП базисе с квазилинейной нагрузкой (МСХТ)
    Другое Радиоэлектроника
  • 227. Проектирование радиолокационной станции для обнаружения надводных целей в пределах речного шлюза Усть-Каменогорской гидроэлектростанции
    Другое Радиоэлектроника

     

    1. Крылов В.А., Юченкова Т.В. Защита от электромагнитных излучений. М.: Советское радио, 1972.
    2. Производственное освещение. Методические указания к выполнению раздела «Охрана труда» в дипломном проекте. Алма-Ата.:1989.
    3. Баклашов Н.И. Охрана труда на предприятиях связи и охрана окружающей среды. М.: Радио и связь, 1989. 287 с.
    4. Шумилин М.С. Радиопередающие устройства. М.: Высшая школа, 1981. 295 с.
    5. Мехайлов А.В. Водные пути и порты. М.: Транспорт, 1981. 278 с.
    6. Петров Б.Е., Романюк В.А. Радиопередающие устройства на полупроводниковых приборах. М.: Радио и связь, 1989. 180 с.
    7. Шахгильдян В.В. Проектирование радиопередающих устройств. М.: Радио и связь, 1993. 512 с.
    8. Петухов В.М. Полупроводниковые приборы. Транзисторы. М.: Радио и связь, 1995.
    9. Сколник М. Введение в технику радиолокационных систем. М.: Мир, 1965.
    10. Князевский Б.А. Охрана труда. М.: Высшая школа, 1982. 311 с.
    11. Кодратенков Г.С. Радиолокационные станции обзора земли. М.: Радио и связь, 1983. 272 с.
    12. Васин В.В. Справочник-задачник по радиолокации. М.: Советское радио, 1977. 320 с.
    13. Благовещенский М.В. Проектирование радиопередающих устройств СВЧ. М.: Советское радио, 1979. 317 с.
    14. Коган И.М. Ближняя радиолокация. М.: Советское радио, 1973.
    15. Сколник М. Справочник по радиолокации. Перевод с английского под общей редакцией Трофимова К. Н. в четырех томах. М.: Советское радио, 1979.
    16. Соколов М.А. Проектирование радиолокационных приемных устройств. М.: Высшая школа, 1984. 335 с.
    17. Лобов Г.Д. Устройства первичной обработки микроволновых сигналов. М.: Издательство МЭИ, 1990. 254 с.
    18. Логовин А.И. Аналоговые и дискретные виды модуляции в радиопередающих устройствах. М.: МИИГА, 1991. 80 с.
    19. Дулевич В.Е. Теоретические основы радиолокации. М.: Советское радио, 1978.
    20. Богомолов А.Ф. Устройства формирования и обработки радиолокационных сигналов. М.: МЭИ, 1986. 214 с.
    21. Шварц Н.З. Усилители СВЧ на полевых транзисторах. М.: Радио и связь, 1987. 202 с.
    22. Кандыба П.Е. Пьезоэлектрические резонаторы. Справочник. М.: Радио и связь, 1992. 343 с.
    23. Голомедов А.В. Транзисторы малой мощности. М.: Радио и связь, 1989. 385 с.
    24. Дьяконов В.П. Схемотехника устройств на мощных полевых транзисторах: справочник. М.: Высшая школа,1993.
    25. Воскресенский Д.И. Антенны и устройства СВЧ. М.: Советское радио, 1994. 592 с.
    26. Кочержевский Г.М. Козырев Н.Д. Антенно-фидерные устройства. М.: Радио и связь, 1989. 352 с.
  • 228. Проектирование радиоприёмника
    Другое Радиоэлектроника

    Áîëüøîé óíèâåðñàëüíîñòüþ îáëàäàåò ôóíêöèîíàëüíàÿ ìèêðîñõåìà Ê174ÏÑ1. Îíà ìîæåò ðàáîòàòü â øèðîêîì äèàïàçîíå ÷àñòîò, åå ìîæíî èñïîëüçîâàòü íå òîëüêî â íèçêî÷àñòîòíîé ðàäèîàïïàðàòóðå, íî è â ðàäèîâåùàòåëüíûõ è òåëåâèçèîííûõ óñòðîéñòâàõ. Îíà ïðåäñòàâëÿåò ñîáîé áàëàíñíûé ñìåñèòåëü, îáëàäàþùèé ñëåäóþùèìè îñíîâíûìè òåõíè÷åñêèìè õàðàêòåðèñòèêàìè:

  • 229. Проектирование РЭС
    Другое Радиоэлектроника

    Целью расчета является определение температур нагретой зоны и среды вблизи поверхности ЭРЭ, необходимых для оценки надежности. Расчет тепловых полей внутри блока невозможен из-за громоздкости задачи и неточности исходных данных: мощности источников теплоты, теплофизических свойств материалов, размеров границ. Поэтому при расчете теплового режима блоков РЭА используют приближенные методы анализа и расчета. Расчет проводится для наиболее критичного элемента, т.е элемента допустимая положительная температура которого имеет наименьшее значение среди всех элементов, входящих в состав устройства и образующих нагретую зону. Конструкция РЭА заменяется её физической тепловой моделью, в которой нагретая зона представляется в виде параллелепипеда, имеющего среднеповерхностную температуру tн.з и рассеиваемую тепловую мощность Pн.з. Расчет теплового режима блока производят в 2 этапа: определение температуры корпуса блока tк и определение среднеповерхностной температуры нагретой зоны tн.з. Для выполнение расчета теплового режима необходимы следующие исходные данные:

  • 230. Проектирование сигнатурного анализатора
    Другое Радиоэлектроника

    До взятия сигнатур от узлов в системе сам сигнатурный анализатор и подключения входных сигналов контролируются по сигнатурам земли и питания Vcc. Регистр сдвига а анализаторе инициализируется на нуль до регистрации любых данных. Когда пробник касается земли, вход данных всегда находится в состоянии логического нуля 0, которое не изменяет начального состояния регистра сдвига. По окончании цикла регистрации данных остаток в регистре сдвига будет нулевым. Это состояние может изменить только входной сигнал логической 1, которого, очевидно, не может быть при контроле сигнатуры земли. Следовательно, земля всегда дает сигнатуру 0000, которую можно считать ее “характеристической сигнатурой”. Однако положительное питание Vcc всегда воспринимается как состояние логической 1, которое изменяет начальное состояние регистра сдвига. Остаток, образующийся по окончании регистрации данных, зависит от числа состояний синхронизации между сигналами пуска и останова и будет различным при изменении запускающих сигналов. При конкретном подключении сигналов пуска, останова и синхронизации сигнатура Vcc будет одной и той же, поэтому ее называют “характеристической сигнатурой” для данного подключения входов. Но, разумеется, она будет получаться различной при других подключениях управляющих входов и (или) выборе других активных фронтов. Когда от проверяемого узла получается такая же сигнатура, как и от Vcc, может оказаться что из-за отказа он закорочен на шину питания Vcc. Однако иногда и от исправных узлов получается такая же сигнатура, как и характеристическая сигнатура Vcc. Проще всего различать эти две ситуации по индикатору логического пробника в исправном узле он вспыхивает, показывая наличие сигналов в узле. Если же индикатор не вспыхивает, следует предположить наличие отказа.

  • 231. Проектирование средств организации каналов передачи данных
    Другое Радиоэлектроника
  • 232. Проектирование схемы телефонного сигнализатора
    Другое Радиоэлектроника
  • 233. Проектирование усилителя электрических сигналов
    Другое Радиоэлектроника

    В качестве источника входного сигнала УНЧ могут использоваться такие устройства как микрофон, звукосниматель, фотоэлемент, термопара, детектор и т.д. Типы нагрузок также весьма разнообразны. Ими могут быть громкоговоритель, измерительный прибор, записывающая головка магнитофона, последующий усилитель, осциллограф, реле и т.д. Большинство из перечисленных выше источников входного сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, так как при таком слабом управляющем напряжении невозможно получить сколько-нибудь значительное изменения выходного тока, а следовательно, и выходной мощности. Поэтому в состав структурной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность полезного сигнала в нагрузку, как правило, входят предварительные каскады усиления. Основными техническими полазателями УНЧ являются: коэффициенты усиления (по напряжению, току и мощности), входное и выходное сопротивления, выходная мощность, коэффициент полезного действия, номинальное входное напряжение (чувствительность), диапазон усиливаемых частот, динамический диапазон амплитуд и уровень собственных помех, а также показатели, характеризующие нелинейные, частотные и фазовые искажения усиливаемого сигнала.

  • 234. Проектирование устройства преобразования сигналов
    Другое Радиоэлектроника

    В полудуплексном режиме АПД попеременно работает на передачу и на прием .Изменение направления передачи осуществляется тем ООД, которое распознает конец принятого сообщения. Конец может быть выявлен по принятой последовательности битов (после чего ООД на передающей стороне переводит цепь 105 в состояние «выключено» и в АПД выключается передатчик) или по снижению уровня приема ниже установленного минимального значения. В обоих случаях ООД на приемной стороне должно ожидать перехода цепи 109 в состояние «выключено». Такой переход происходит после упомянутого снижения уровня приема не сразу ,а лишь через определенное время последействия (tпосл на рис.),превышающее длительность перерывов , которые возможны в канале связи . только когда зафиксировано состояние «выключено» цепи 109,ООД оконечной установки , работавшей ранее на прием ,переключается на передачу ,переводя цепь 105 в состояние «включено». Передача данных начинается после того ,как АПД посредством перевода цепи 106 в состояние «включено» откроет соединительный тракт. До тех пор ,пока цепь 105 находится в состоянии «включено»,цепь приема данных 104 работающей на передачу установки для защиты от ложных изменений состояния должна находиться в состоянии «1». Установка 1 передающая Установка 1 - приемная

  • 235. Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств
    Другое Радиоэлектроника

     

    1. Проектирование радиопередающих устройств с применением ЭВМ / Под ред. О.В. Алексеева. М.: Радио и связь, 1987. 392 с.
    2. Широкополосные радиопередающие устройства / Алексеев О.В., Головков А.А., Полевой В.В., Соловьев А.А.; Под ред. О.В. Алексеева. - М.: Связь, 1978. 304 с.
    3. Проектирование радиопередатчиков / В.В. Шахгильдян, М.С. Шумилин, В.Б. Козырев и др.; Под ред. В.В. Шахгильдяна. М.: Радио и связь, 2000. 656 с.
    4. Каганов В.И. Радиопередающие устройства. М.: ИРПО: Издательский центр «Академия», 2002. 288 с.
    5. Асессоров В.В., Кожевников В.А., Асеев Ю.Н., Гаганов В.В. Модули ВЧ усилителей мощности для портативных средств связи // Электросвязь. 1997. - № 7. С. 21 22.
    6. Титов А.А. Двухканальный усилитель мощности с диплексерным выходом // Приборы и техника эксперимента. 2001. № 1. С. 68 72.
    7. Шварц Н.З. Линейные транзисторные усилители СВЧ. - М.: Сов. радио, 1980. 368 с.
    8. Никифоров В.В., Терентьев С.Ю. Синтез цепей коррекции широкополосных усилителей мощности с применением методов нелинейного программирования // Сб. «Полупроводниковая электроника в технике связи» / Под ред. И.Ф. Николаевского. М.: Радио и связь, 1986. Вып. 26. С. 136144.
    9. Никифоров В.В., Кулиш Т.Т., Шевнин И.В. К проектированию широкополосных усилителей мощности КВ- УКВ- диапазона на мощных МДП-транзисторах // В сб.: Полупроводниковые приборы в технике связи / Под ред. И.Ф. Николаевского. М.: Радио и связь. -1993. Вып. 23. С. 105108.
    10. Титов А.А., Бабак Л.И., Черкашин М.В. Расчет межкаскадной согласующей цепи транзисторного полосового усилителя мощности // Электронная техника. Сер. СВЧ-техника. 2000. Вып. 1. С. 4650.
    11. Бабак Л.И., Шевцов А.Н., Юсупов Р.Р. Пакет программ автоматизированного расчета транзисторных широкополосных и импульсных УВЧ - и СВЧ усилителей // Электронная техника. Сер. СВЧ техника. 1993. Вып. 3. С. 6063.
    12. Шварц Н.З. Усилители СВЧ на полевых транзисторах. М.: Радио и связь, 1987. 200 с.
    13. Петухов В.М. Полевые и высокочастотные биполярные транзисторы средней и большой мощности и их зарубежные аналоги: Справочник. В 4 томах. М.: КУбК-а, 1997.
    14. Мамонкин И.Г. Усилительные устройства. Учебное пособие для вузов. - М.: Связь. 1977. 360 с.
    15. Титов А.А. Расчет схемы активной коллекторной термостабилизации и её использование в усилителях с автоматической регулировкой потребляемого тока // Электронная техника. Сер. СВЧ техника. 2001. № 2. С. 2630.
    16. Устройства сложения и распределения мощностей высокочастотных колебаний / В.В. Заенцев, В.М. Катушкина, С.Е. Лондон, З.И. Модель; Под ред. З.И. Моделя. М.: Сов. радио, 1980. 296 с.
    17. Лондон С.Е., Томашевич С.В. Справочник по высокочастотным трансформаторным устройствам. М.: Радио и связь, 1984. 216 с.
    18. Титов А.А., Болтовская Л.Г. Высоковольтный транзисторный усилитель однополярных импульсов // Приборы и техника эксперимента. 1979. №2. С. 140141.
    19. Гребенников А.В., Никифоров В.В. Транзисторные усилители мощности для систем подвижной радиосвязи метрового и дециметрового диапазонов волн // Радиотехника. 2000 № 5. С. 8386.
    20. Гребенников А.В., Никифоров В.В., Рыжиков А.Б. Мощные транзисторные усилительные модули для УКВ ЧМ и ТВ вещания // Электросвязь. 1996. № 3. С. 2831.
    21. Титов А.А., Кологривов В.А. Параметрический синтез межкаскадной корректирующей цепи полосового усилителя мощности // Электронная техника. Сер. СВЧ техника. 2002. Вып. 1. С. 613.
    22. Титов А.А. Усилитель мощности для оптического модулятора // Приборы и техника эксперимента. 2002. № 5. С. 8890.
    23. Титов А.А. Полосовой усилитель мощности с повышенной линейностью амплитудной характеристики // Приборы и техника эксперимента. 2003. № 4. С. 6568.
    24. Радиопередающие устройства: Учебник для вузов / Л.А. Белов, М.В. Благовещенский, В.М. Богачев и др.; Под ред. М.В. Благовещенского, Г.У. Уткина. М.: Радио и связь, 1982. 408 с.
    25. Знаменский А.Е., Нестеров М.И. Расчет трансформаторов сопротивлений с сосредоточенными элементами // Техника средств связи. Сер. Техника радиосвязи. 1983. Вып. 1 С. 8388.
    26. Знаменский А.Е. Таблицы для расчета трансформаторов сопротивлений в виде фильтров нижних частот. // Техника средств связи. Сер. Техника радиосвязи. 1985. Вып. 1. С. 99110.
    27. Мелихов С.В. Аналоговое и цифровое радиовещание: Учебное пособие. Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2002. 251 с.
    28. ГОСТ 20532 83. Радиопередатчики телевизионные 1 5 диапазонов. Основные параметры, технические требования и методы измерений. М.: Издательство стандартов, 1984. 34 с.
    29. ГОСТ Р 50890 96. Передатчики телевизионные маломощные. Основные параметры. Технические требования. Методы измерений. М.: Издательство стандартов, 1996. 36 с.
    30. Иванов В.К. Оборудование радиотелевизионных передающих станций. М.: Радио и связь, 1989. 336 с.
    31. Зааль Р. Справочник по расчету фильтров: Пер. с нем. - М.: Радио и связь. 1983. 752 с.
    32. Титов А.А., Григорьев Д.А. Параметрический синтез межкаскадных корректирующих цепей высокочастотных усилителей мощности // Радиотехника и электроника. 2003. № 4. С 442448.
    33. Howard A. Higher manufacturing yields using DOE // Microwave J. 1994. Vol. 37. No. 7. P. 92 98.
    34. Бабак Л.И., Пушкарев В.П., Черкашин М.В. Расчет сверхширокополосных СВЧ усилителей с диссипативными корректирующими цепями // Известия вузов. Радиоэлектроника. 1996. Том 39. - № 11. - С. 20 28.
    35. Ku W.H., Petersen W.C. Optimum gain-bandwidth limitation of transistor amplifiers. // IEEE Trans. 1975. Vol. CAS - 22. No. 6. P. 523 533.
    36. Ланнэ А.А. Оптимальный синтез линейных электронных схем. М.: Связь, 1978. 336 с.
    37. Трифонов И.И. Расчет электронных цепей с заданными частотными характеристиками. М.: Радио и связь, 1988. 304 с.
    38. Балабанян Н. Синтез электрических цепей. М.: Госэнергоиздат, 1961. 543 с.
    39. Муртаф Б. Современное линейное программирование: Пер. с англ. М.: Мир, 1984. 224 с.
    40. Смирнов Р.А. Оптимизация параметров импульсных и широкополосных усилителей. М.: Энергия, 1976. 200 с.
    41. Титов А.А. Расчет межкаскадной корректирующей цепи многооктавного транзисторного усилителя мощности. // Радиотехника. 1987. №1. С. 29 31.
    42. Мелихов С.В., Титов А.А. Широкополосный усилитель мощности с повышенной линейностью // Приборы и техника эксперимента. 1988. № 3. С. 124 125.
    43. Титов А.А., Ильюшенко В.Н., Авдоченко Б.И., Обихвостов В.Д. Широкополосный усилитель мощности для работы на несогласованную нагрузку // Приборы и техника эксперимента. 1996. № 2. С. 68 69.
    44. Окснер Э.С. Мощные полевые транзисторы и их применение: Пер. с англ. М.: Радио и связь, 1985. 288 с.
    45. Брауде Г.З. Коррекция телевизионных и импульсных сигналов. // Сб. статей. М.: Связь, 1967. 245 с.
    46. Титов А.А. Параметрический синтез межкаскадной корректирующей цепи широкополосного усилителя мощности на полевых транзисторах. // Радиотехника. 2002. № 3 - С. 9092.
    47. Obregon J., Funck F., Borvot S. A 150 MHz 16 GHz FET amplifier. // IEEE International solid-state Circuits Conference. 1981, February. P. 66 67.
    48. Авдоченко Б.И., Ильюшенко В.Н., Донских Л.П. Пикосекундные усилительные модули на транзисторах с затвором Шотки // Приборы и техника эксперимента. 1986. № 5. С. 119122.
    49. Гринберг Г.С., Могилевская Л.Я., Хотунцев Ю.Л. Численное моделирование нелинейных устройств на полевых транзисторах с барьером Шотки // Электронная техника. Сер. СВЧ-техника. 1993. Вып. 4. С. 1822.
    50. Потемкин В.Г. Система инженерных и научных расчетов MATLAB 5.x: - В 2-х томах. М.: ДИАЛОГ-МИФИ, 1999.
    51. Титов А.А. Параметрический синтез межкаскадной корректирующей цепи сверхширокополосного усилителя мощности // Известия вузов. Сер. Электроника. 2002. № 6. С. 8187.
    52. Бабак Л.И., Дергунов С.А. Расчет цепей коррекции сверхширокополосных транзисторных усилителей мощности СВЧ // Сб. «Радиотехнические методы и средства измерений» Томск: Изд-во Том. ун-та, 1985 г.
    53. Жаворонков В.И., Изгагин Л.Н., Шварц Н.З. Транзисторный усилитель СВЧ с полосой пропускания 1 1000 МГц // Приборы и техника эксперимента. 1972. № 3. С. 134135.
    54. Титов А.А. Параметрический синтез широкополосных усилительных ступеней с заданным наклоном амплитудно-частотной характеристики // Известия вузов. Сер. Радиоэлектроника. 2002. № 10. С. 2634.
    55. Манзон Б.М. Maple 5 Power Edition М.: Информационно-издательский дом «Филинъ», 1998. 240 с.
    56. Титов А.А. Расчет амплитудной характеристики каскада, работающего в режиме с отсечкой коллекторного тока // Известия вузов. Сер. Радиоэлектроника. 2003. № 2. С. 3337.
    57. Вай Кайчень. Теория и проектирование широкополосных согласующих цепей: Пер. с англ. М.: Связь, 1979. 288 с.
  • 236. Проектирование Цифрового устройства
    Другое Радиоэлектроника

    Внедрение микропроцессорной, и вообще цифровой, техники в устройства управления промышленными объектами требует от специалистов самого различного профиля быстрого освоения этой области знания. В процессе разработки функциональных схем цифровых устройств отчетливо выделяются два характерных этапа. На первом этапе, который можно назвать структурным проектированием, заданный неформально алгоритм разработчик представляет в виде последовательности некоторых операторов, таких, как получение результата, счет, преобразование кода, передача информации. При этом он старается использовать ограниченный набор общепринятых операторов. При использовании этих операторов, как правило, алгоритм можно представить довольно небольшим их числом. Структура алгоритма становится обозримой, понятной, легко читаемой и однозначной. На основе полученной структуры алгоритма формулируются технические требования к схемам, реализующим отдельные операторы. По техническим требованиям в качестве функциональных узлов схемы можно применить либо готовые блоки в интегральном исполнении, либо, если таких микросхем в наличии нет, синтезировать их из более простых элементов. Подобный синтез первоначально производится при помощи алгебры логики, после чего по полученным функциям строится эквивалентная схема. Однако, как правило, синтезированные схемы хуже их аналогов в интегральном исполнении. К этому приводят следующие обстоятельства: большее время задержки, большие габариты, большее потребление энергии. Поэтому результативного проектирования цифровых устройств разработчик должен уметь: выбрать наиболее приемлемый вариант решения поставленной задачи, работать с алгеброй логики, знать основные цифровые элементы и уметь их применять, по возможности знать наиболее простые и распространенные алгоритмы решения основных задач. Знание наиболее распространенных инженерных приемов в проектировании устройств позволит в будущем сразу воспользоваться готовой схемой, не занимаясь бесполезной работой. Необходимо заметить, что реализация схемы гораздо сложнее, чем простое решение задачи в алгебре логики и наборе полученной функции из логических элементов. В действительности даже, казалось бы, самые простые элементы, необходимо включать по определенной схеме, знать назначения всех выводов. Необходимо знать, чем различаются элементы в пределах серии. Понимание внутренней логики микросхемы особенно важно именно для специалистов по автоматике и промышленной электронике, поскольку цифровые микросхемы изначально создавались для выполнения строго определенных функций в составе ЭВМ. В условиях автоматики и радиотехники они часто выполняют функции, не запланированные в свое время их разработчиками, и грамотное использование микросхем в этих случаях прямо зависит от понимания логики их работы. Хорошее знание тонкостей функционирования схем узлов становится жизненно необходимым при поиске неисправностей, когда нужно определить, имеется ли неисправность в данном узле или же на его вход поступают комбинации сигналов, на которые схема узла не рассчитана. Составление тестов, а тем более разработка само проверяемых схем также требуют очень хороших знаний принципов работы узлов.

  • 237. Проектирование цифрового фильтра
    Другое Радиоэлектроника

    Расмотрим организационную структуру предприятия на примере СКБ «Молния» рис. 3.1. СКБ «Молния» состоит из совокупности функционально связанных отделов: отдел системных разработок, двух отделов схемных разработок ( один из которых занимается схемотехническими решением для аппаратуры систем связи), отдел конструирования РЭА, а также отдел опытного-эксперементального производства, техническийотдел (испытания выпускаемой продукции на надёжность и стойкость), отдел технической документации, служба нормоконтроля (проверка соответствия чертежей разрабатываемой продукции установленным ГОСТам), отдел стандартизации и метрологии (метрологическая экспертиза). Отдельной совокупностью выступают административно-управленческие отделы СКБ: бухгалтерия, отдел кадров, административно-правовой отдел.

  • 238. Проектирование цифровой следящей системы
    Другое Радиоэлектроника

    В проектируемой следящей системе в качестве исполнительного двигателя (Д) должен быть использован двигатель постоянного тока серии МИ, в качестве усилителя мощности - электромашинный усилитель с поперечным полем (ЭМУ). Для измерительного устройства (ИУ) рекомендуется использовать сельсинную пару: сельсин-датчик и сельсин-трансформатор (приемник). Так как измерительное устройство работает на переменном токе, а усилитель мощности и исполнительный двигатель - на постоянном токе, то после измерительного устройства должен быть применен фазовый детектор (ФД). Кроме указанных элементов в функциональную схему входят корректирующее устройство (КУ), усилитель напряжения (У), редуктор (Р), посредством которого исполнительный двигатель соединяется с объектом управления и ротором сельсина-трансформатора, и объект управления (ОУ). Корректирующее устройство представлено тремя блоками: аналого-цифровой преобразователь (АЦП), вычислитель (В) и цифро-аналоговый преобразователь (ЦАП).

  • 239. Проектирование ЦС АТСКЭ Квант
    Другое Радиоэлектроника

    Исходящее местное соединение при открытой нумерации со вторым зуммером. Если при установлении исходящей связи (УПАТС - АТС) в случае открытой нумерации предусматривается второй зуммер, то после приема индекса исходящей связи по команде ЦУУ блок ПДСУ посылает сигнал ответа станции. Получив этот сигнал, абонент продолжает набор номера. При наборе первого знака по команде ЦУУ блок ПДСУ прекращает посылку сигнала ответа и далее соединение устанавливается, как и при закрытой нумерации. Если первым даст отбой вызывающий абонент, то сигнал отбоя принимает ИШК и передает его в ЦУУ, который по этому сигналу освобождает все приборы станции кроме ИК. Исходящий комплект по команде ЦУУ передает сигнал отбоя на встречную станцию и затем освобождается. Если первым даст отбой вызываемый абонент, то сигнал отбоя со встречной станции принимает исходящий комплект, который передает его в ЦУУ. последний освобождает приборы, занятые в данном соединении. Вызывающий абонент получает сигнал занятости из своего АК.

  • 240. Проектирование ЦСК типа STX-1
    Другое Радиоэлектроника

    Введение31.Структурная схема проектируемой ГТС52.Функциональная схема проектируемой АТС62.1.Характеристика проектируемой РАТС73.Расчет телефонной нагрузки83.1.Исходные данные83.2.Расчет возникающей нагрузки103.3.Расчет межстанционных связей114.Обоснование выбора оборудования проектируемой АТС194.1.Обоснование выбора оборудования подсистемы коммутации (SS-S)194.2.Обоснование выбора оборудования подсистемы коммутации (SS-Т)234.3.Обоснование выбора оборудования подсистемы взаимосвязи (IS)254.4.Обоснование выбора оборудования подсистемы управления (CS)294.5.Размещение оборудования315.Ведомость на оборудование32Литература33