Информация по предмету Радиоэлектроника

  • 101. Карьерные железнодорожные пути. Устройство рельсовой колеи и стрелочных переводов
    Другое Радиоэлектроника
  • 102. Каталитический и термический крекинг
    Другое Радиоэлектроника
  • 103. Классификация современных паровых котлов
    Другое Радиоэлектроника
  • 104. Классификация современных паровых турбин
    Другое Радиоэлектроника
  • 105. Композиционные и порошковые материалы
    Другое Радиоэлектроника
  • 106. Компьютерный интерфейс передачи в системе персонального радиовызова общего пользования
    Другое Радиоэлектроника

    После передачи адресного слова следует информационное слово, содержащего информацию, предназначенную абоненту пейджера. Для примера покажем первое после адреса информационное слово при передаче сообщения "ПЕЙДЖЕР". Значение первого информационного слова в передаче данного сообщения в шестнадцатеричной форме будет иметь вид "EBA32D44". В двоичной форме кодовое слово показано в таблице 4. Бит №1 флаг, имеющий значение "1". Далее биты №2-21 содержат непосредственно информацию, передаваемую на пейджер. Так как применяется семибитовое кодирование, каждому символу соответствует семь бит, причем первым передается младший бит, а последним старший бит. К примеру: первый символ, передаваемый на пейджер, содержится в битах №2-8, что соответствует значению "1101011", а так как первым передается младший бит, то номер символа, соответствующей кодировочной таблице будет иметь значение "1101011". В шестнадцатеричной системе будет иметь значение "6B". Сравнивая номер символа с кодировочной таблицей пейджера NEC, приведенной в таблице 12, видим, что номер символа соответствует символу "П", который является первой буквой слова "ПЕЙДЖЕР". Аналогично передается следующий символ (биты №9-15), что соответствует значению "1010001". Перевернув значение и переведя в шестнадцатеричную форму, получаем номер символа, соответствующий значению "45". Сравнивая с кодировочной таблицей, видим, что номер символа соответствует символу "Е". Этот символ является второй буквой слова "ПЕЙДЖЕР". Аналогично передаются все остальные символы. Из-за того, что в одном кодовом слове передается двадцать информационных бит, последний бит третьего символа передается в следующем информационном слове, следующих друг за другом.

  • 107. Конструирование машин
    Другое Радиоэлектроника
  • 108. Контроль динамических параметров ЦАП
    Другое Радиоэлектроника

    Если срабатывание компараторов неустойчивое, нерегулярное и за n повторений переходных процессов число срабатываний не превышает n/2 (что возможно при воздействии на компараторы KH1, КН2 различных помех, накладываемых на исследуемый сигнал и особенно ощутимых с приближением переходного процесса к допустимым значениям), то переполнения счетчика Сч1 не происходит и импульс переполнения счетчика Сч2 по окончании п повторений переходного процесса обнуляет счетчик Сч1 и вновь перемещает стробирующий импульс на ?t, обеспечивая устойчивое срабатывание одного из компараторов. Это является признаком достижения переходным процессом границы зоны допустимых значений установившегося выходного напряжения ЦАП. В этом случае число срабатываний компараторов KH1 или KH2 до окончания очередного цикла из n повторений переходного процесса превышает n/2, что приводит к переполнению счетчика Cч1, выходной импульс которого воздействует на триггер Т1, запрещая с помощью СЗ прохождение импульса переполнения счетчика Сч2 на ФПН. По окончании цикла импульс переполнения счетчика Сч2, обнуляя счетчик Сч1, не проходит на ФПН, что сохраняет неизменным уровень срабатывания дискриминатора Д, а значит, и расположение стробирующего импульса на временной оси. Перед началом очередного цикла сканирования переходного процесса устройством управления УУ происходит обнуление счётчика Сч2 и нормализация триггера Т1. При периодическом повторении циклов сканирования устойчивое срабатывание компараторов KH1 или КН2 обеспечивает неизменное положение стробирующего импульса на временной оси, момент появления которого и является моментом окончания переходного процесса исследуемого сигнала.

  • 109. КПД трансформатора. Устройство и работа
    Другое Радиоэлектроника

    Чтобы передача электрической энергии(электроэнергии) на многие сотни и тысячи километров стали выгодной, необходимо значительно большее напряжение 500, 750 кВ и более. Для этой цели и служит трансформатор - электомагнитное устройство с двумя или более обмотками, предназначенное для преобразования с помощью элетромагнитной индукции переменного тока одного напряжения в переменный ток другого(или других) напряжений. Обмотка трансформатора, к которой подводиться энергия преобразуемого перемнного тока, называется первичной, а обмотка от которой отводится энергия преобразованного переменного тока - вторичной.Существут трансформаторы у которых помимо первичной и вторичной обмоток, существует третья обмотка с промежуточным напряжением.

  • 110. Криоэлектроника
    Другое Радиоэлектроника
  • 111. Курсовая по опеределению эмоционального состояния человека
    Другое Радиоэлектроника

    Современные устройства позволяют примерно в 85% случаев верно оценивать ответы. Прибор состоит из комплекта чувствительных измерительных приборов, подключённых к датчикам давления. Эластичный браслет с таким датчиком, закреплённый выше локтя, позволяет регистрировать на самописце запись изменения пульса и давления. Датчик, размещаемый на уровне груди, позволяет регистрировать ритм дыхания. Однако в радиолюбительской практике значительно проще регистрировать изменение сопротивления кожи на кистях рук или на запястье. Электроды в виде электропроводящих полосок шириной примерно 20 мм с помощью липкой ленты прикрепляют к коже (запястья, ладони, лба) на расстоянии 10-15 мм. Испытуемому задают серию вопросов, на которые он должен дать ответы «да» и «нет». Расшифровав запись на самописце или по отклонению стрелки прибора, определяют реакцию организма на правильные ответы и на заведомо ложные.

  • 112. Курсовая: Основы стандартизации и функциональной взаимозаменяемости. Расчет размерных цепей
    Другое Радиоэлектроника
  • 113. Лабораторные по проектированию РЭС
    Другое Радиоэлектроника

    Íåîáõîäèìî ðàçðàáîòàòü ïðèíöèïèàëüíûé âàðèàíò êîíñòðóêöèè ÌÝÓ, èñõîäÿ èç îïðåäåëåííûõ óñëîâèé.  êà÷åñòâå èñõîäíûõ, èñïîëüçóþòñÿ ñëåäóþùèå äàííûå:

  • 114. Лазер
    Другое Радиоэлектроника

    Лазер дает возможность осуществлять сильную концентрацию световой мощности в пределах весьма узких частотных интервалов: при этом возможна также плавная перестройка частоты. Поэтому лазеры широко применяются для получения и исследования оптических спектров веществ. Лазерная спектроскопия отличается исключительно высокой степенью точности (высоким разрешением). Лазеры позволяют также осуществлять избирательное возбуждение тех или иных состояний атомов и молекул, избирательный разрыв определенных химических связей. В результате оказывается возможным инициирование конкретных химических реакций, управление развитием этих реакций, исследование их кинетики.

  • 115. Лазер на алюмо-иттриевом гранате (АИГ) с непрерывной накачкой
    Другое Радиоэлектроника

    На рис. 5 представлена упрощенная схема энергетических уровней АИГ-Nd. Эти уровни обусловлены переходами трех 4f электронов внутренней оболочки иона Nd3+. Поскольку эти электроны экранируются восемью внешними электронами (5s2 и 5р6), на упомянутые энергетические уровни кристаллическое поле влияет лишь в незначительной степени. Поэтому спектральные линии, соответствующие рассматриваемым переходам, относительно узки. Уровни энергии обозначаются в соответствии с приближением LS-связи атомной физики, а символ, характеризующий каждый уровень, имеет вид 2s+lLj, где S суммарное спиновое квантовое число, j суммарное квантовое число углового момента, a L орбитальное квантовое число. Заметим, что разрешенные значения L, а именно L = = О, 1, 2, 3, 4, 5, 6, ... обозначаются прописными буквами соответственно S, P, D, F, G, Н, I Таким образом, основное состояние 4I9/2 иона Nd3+ соответствует состоянию, при котором 2S + 1 = 4 (т. е. S = 3/2), L = 6 и J = L S = 9/2. Две основные полосы накачки расположены на длинах волн 0,73 и 0,8 мкм соответственно, хотя другие более высоко лежащие полосы поглощения также играют важную роль. Эти полосы связаны быстрой (~ 10-7 с) безызлучательной релаксацией с уровнем 4F3/2, откуда идет релаксация на нижние уровни (а именно 4I9/2, 4I11/2 и 4I13/2), этот последний уровень не показан на рис.5. Однако скорость релаксации намного меньше (??0,23 мс), поскольку переход запрещен в приближении электродипольного взаимодействия (правило отбора для электродипольно разрешенных переходов имеет вид ?J=0 или ±1) и поскольку безызлучательиая релаксация идет медленно вследствие большого энергетического зазора между уровнем 4F3/2 и ближайшим к нему нижним уровнем. Это означает, что уровень 4F3/2 запасет большую долю энергии накачки и поэтому хорошо подходит на роль верхнего лазерного уровня. Оказывается, что из различных возможных переходов с уровня 4F3/2 на нижележащие уровни наиболее интенсивным является переход 4F3/2 > I11/2 Кроме того, уровень 4I11/2 связан быстрой (порядка наносекунд) безызлучательной релаксацией в основное состояние 4I9/2, а разница между энергиями уровней 4I9/2, и 4I11/2 почти на порядок величины больше, чем kT. Отсюда следует, что тепловое равновесие между этими двумя уровнями устанавливается очень быстро и согласно статистике Больцмана уровень 4I11/2 в хорошем приближении можно считать практически пустым. Таким образом, этот уровень может быть прекрасным кандидатом на роль нижнего лазерного уровня.

  • 116. Лазерные оптико-электронные приборы
    Другое Радиоэлектроника

    СтруктураИзмеряемая физическая величинаИспользуемое физическое явление, свойствоДетектируемая величинаОптическое волокноПараметры и особенности измеренийДатчики с оптическим волокном в качестве линии передачиПроходящего типаЭлектрическое напряжение, напряженность электрического поляЭффект ПоккельсаСоставляющая поляризацияМногомодовое1... 1000B; 0,1...1000 В/смПроходящего типаСила электрического тока, напряженность магнитного поляЭффект ФарадеяУгол поляризацииМногомодовоеТочность 1% при 20...85 СПроходящего типаТемператураИзменение поглощения полупроводниковИнтенсивность пропускаемого светаМногомодовое-10...+300 С (точность 1 С)Проходящего типаТемператураИзменение постоянной люминесценцииИнтенсивность пропускаемого светаМногомодовое0...70 С (точность 0,04 С)Проходящего типаТемператураПрерывание оптического путиИнтенсивность пропускаемого светаМногомодовоеРежим "вкл/выкл"Проходящего типаГидроакустическое давлениеПолное отражениеИнтенсивность пропускаемого светаМногомодовоеЧувствительность ... 10 мПаПроходящего типаУскорениеФотоупругостьИнтенсивность пропускаемого светаМногомодовоеЧувствительность около 1 мgПроходящего типаКонцентрация газаПоглощениеИнтенсивность пропускаемого светаМногомодовоеДистанционное наблюдение на расстоянии до 20 кмОтражательного типаЗвуковое давление в атмосфереМногокомпонентная интерференцияИнтенсивность отраженного светаМногомодовоеЧувствительность, характерная для конденсаторного микрофонаОтражательного типаКонцентрация кислорода в кровиИзменение спектральной характеристикиИнтенсивность отраженного светаПучковоеДоступ через катетерОтражательного типаИнтенсивность СВЧ-излученияИзменение коэффициента отражения жидкого кристаллаИнтенсивность отраженного светаПучковоеНеразрушающий контрольАнтенного типаПараметры высоковольтных импульсовИзлучение световодаИнтенсивность пропускаемого светаМногомодовоеДлительность фронта до 10 нсАнтенного типаТемператураИнфракрасное излучениеИнтенсивность пропускаемого светаИнфракрасное250...1200 С (точность 1%)Датчики с оптическим волокном в качестве чувствительного элементаКольцевой интерферометрСкорость вращенияЭффект СаньякаФаза световой волныОдномодовое>0,02 /чКольцевой интерферометрСила электрического токаЭффект ФарадеяФаза световой волныОдномодовоеВолокно с сохранением поляризацииИнтерферометр Маха-ЦендераГидроакустическое давлениеФотоупругостьФаза световой волныОдномодовое1...100 радатм/мИнтерферометр Маха-ЦендераСила электрического тока, напряженность магнитного поляМагнитострикцияФаза световой волныОдномодовоеЧувствительность 10-9 А/мИнтерферометр Маха-ЦендераСила электрического токаЭффект ДжоуляФаза световой волныОдномодовоеЧувствительность 10 мкАИнтерферометр Маха-ЦендераУскорениеМеханическое сжатие и растяжениеФаза световой волныОдномодовое1000 рад/gИнтерферометр Фабри-ПероГидроакустическое давлениеФотоупругостьФаза световой волны (полиинтерференция)ОдномодовоеИнтерферометр Фабри-ПероТемператураТепловое сжатие и расширениеФаза световой волны (полиинтерференция)ОдномодовоеВысокая чувствительностьИнтерферометр Фабри-ПероСпектр излученияВолновая фильтрацияИнтенсивность пропускаемого светаОдномодовоеВысокая разрешающая способностьИнтерферометр МайкельсонаПульс, скорость потока кровиЭффект ДоплераЧастота биенийОдномодовое, многомодовое10-4...108 м/сИнтерферометр на основе мод с ортогональной поляризациейГидроакустическое давлениеФотоупругостьФаза световой волныС сохранением поляризацииБез опорного оптического волокнаИнтерферометр на основе мод с ортогональной поляризациейНапряженность магнитного поляМагнитострикцияФаза световой волныС сохранением поляризацииБез опорного оптического волокнаНеинтерферометрическаяГидроакустическое давлениеПотери на микроизгибах волокнаИнтенсивность пропускаемого светаМногомодовоеЧувствительность 100 мПаНеинтерферометрическаяСила электрического тока, напряженность магнитного поляЭффект ФарадеяУгол поляризацииОдномодовоеНеобходимо учитывать ортогональные модыНеинтерферометрическаяСкорость потокаКолебания волокнаСоотношение интенсивности между двумя модамиОдномодовое, многомодовое>0,3 м/сНеинтерферометрическаяДоза радиоактивного излученияФормирование центра окрашиванияИнтенсивность пропускаемого светаМногомодовое0,01...1,00 МрадПоследовательного и параллельного типаРаспределение температуры и деформацииОбратное рассеяние РелеяИнтенсивность обратного рассеяния РелеяМногомодовоеРазрешающая способность 1 м

  • 117. Лазерные телевизоры
    Другое Радиоэлектроника

    С помощью лазерного проектора вполне реально проецировать изображение на поверхность площадью несколько сотен квадратных метров, причем это не обязательно должен быть привычный экран, это могут быть стены зданий или какие-то другие кривые поверхности. Лазерный луч в любой точке создает резкое, насыщенное и при этом яркое и контрастное изображение.
    Единственное, так как технология еще относительно "сырая", очевидцы наблюдают определенные проблемы с правильностью цветопередачи. Хотя для окраски каждого из лучей применяются специальные кристаллы, меняющие длину волны и, соответственно, цвет, добиться исключительно правильного воплощения цветов непросто. Похоже, в этом направлении ведется определенная работа, и через некоторое время проблема если не исчезнет, то, по крайней мере, будет не так заметна. Длительность службы таких проекторов можно увязать с длительностью "жизни" лазера, а она в 3-5 раз превосходит показатели ламп в других видах проекторов из-за лучшего по сравнению с ними КПД. По части размеров такие проекторы создают двоякое впечатление. С одной стороны, сам лазер - устройство далеко не маленькое и абсолютно не легкое, с другой стороны, проекционная часть соединяется с лазером оптоволоконным кабелем длиной до 30 метров и может разместиться на четверти квадратного метра. С учетом возможности создания огромных изображений такие особенности вполне приемлемы.
    Пока стоимость таких проекторов составляет не менее $200000, а производятся они в весьма ограниченных количествах. В ближайшее время Laser Technologies AG планирует построить специальный новый завод, после чего можно ожидать и более доступной стоимости на LDT-проекторы. Сейчас применение проекторов, основанных на лазерной технологии, может быть оправдано при организации крупных световых шоу, проецирования компьютерной графики, космического моделирования, в центрах управления, тренажерах, системах виртуальной реальности, крупных конференциях. В будущем же, вероятно, с их помощью будут организовывать кинотеатры, проводить презентации и использовать в других более распространенных сферах.

  • 118. Лазеры на гетеропереходах \полупроводниковые лазеры\
    Другое Радиоэлектроника

    Известно, что в сильнолегированных (вырожденных) полупроводниках, когда одному и тому же значению энергии соответствуют различные электронные или дырочные состояния, в p- и n-облбластях уровни Ферми находятся в пределах разрешенных зон и при тепловом равновесии эти уровни для электронов и дырок совпадают (рис. 3, а). В области pn-перехода образуется потенциальный барьер, не позволяющий переходить основным носителям из зоны в зону. Если же к переходу приложить напряжении U в прямом направлении, то потенциальный барьер в области pn-перехода уменьшается на значение энергии, соответствующей этому напряжению. Как правило, это напряжении оказывается приложенным к переходу, вследствие чего равновесие носителей тока нарушается. Если при тепловом равновесии распределение электронов и дырок можно было описать с помощью квазиуровня Ферми, то при наличии приложенного электрического поля заполнение состояний нужно рассматривать отдельно для зоны проводимости и отдельно для валентной зоны. При включении прямого смещения возникает диффузионный поток электронов через pn-переход, который стремится поднять квазиуровень Ферми Fn для электронов в pn-области до его уровня в n-области. Инжектированные электроны после диффундирования на небольшое расстояние, определяемое диффузионной длинной, рекомбинируют с дырками; в результате возникает стационарное состояние, при котором скорость рекомбинации электронов в точности сбалансирована скоростью их инжекции. Совершенно аналогичны рассуждения и для дырок в валентной зоне. При наличии стационарного состояния положение квазиуровней Ферми для двух типов носителей в области перехода меняется (рис. 3, б). Основные носители вытягиваются из контакта, чтобы обеспечить условие нейтральности. В настоящее время лазерные диоды в основном изготовляют из GaAs или Ga1-xAlxAs. Структура лазерного диода на pn-переходе представлена на рис. 4. Обычно pn-переход

  • 119. Лекции - преподаватель Григорьев Владимир Калистратович
    Другое Радиоэлектроника

    Åñòü åù¸ îäíà ïðîáëåìà. Ïðè êàæäîé äèôôóçèè íóæíî ïåðåäèôôóíäèðîâàòü òîò ñëîé, êîòîðûé áûë òî-åñòü êîíöåíòðàöèÿ íîñèòåëåé îêàçûâàåòñÿ áîëüøå, ÷åì â ïðåäûäóùåì ñëîå. Çíà÷èò, ñàìàÿ ìàëàÿ êîíöåíòðàöèÿ äîëæíà áûòü â ïëàñòèíå, â êàðìàíàõ îíà áîëüøå, êàðìàíû ìîãóò èñïîëíÿòü ðîëü êîëëåêòîðîâ, äàëåå ñîçäà¸òñÿ áàçîâàÿ îáëàñòü, â íåé êîíöåíòðàöèÿ íîñèòåëåé åù¸ áîëüøå, ÷åì â êîëëåêòîðíîé îáëàñòè, ïîòîì ìû äåëàåì ýìèòòåðíóþ îáëàñòü, è â íåé ñàìàÿ áîëüøàÿ êîíöåíòðàöèÿ íîñèòåëåé çàðÿäà. Íî ýòî çíà÷èò, ÷òî ñîïðîòèâëåíèå êîëëåêòîðíîé îáëàñòè ñàìîå áîëüøîå, è ïîýòîìó î÷åíü âåëèêî RC âåëèêà ïîñòîÿííàÿ âðåìåíè, òðàíçèñòîðû ðàáîòàþò ñëèøêîì ìåäëåííî. Äëÿ ïîâûøåíèÿ áûñòðîäåéñòâèÿ òðàíçèñòîðîâ íàäî ñäåëàòü íà äíå êàðìàíà òîíêèé ñëîé ñ âûñîêîé êîíöåíòðàöèåé íîñèòåëåé çàðÿäà. Ýòà ïðîáëåìà òîæå áûëà ðåøåíà ñ ïîìîùüþ ýïèòàêñèàëüíîãî íàðàùèâàíèÿ ñëî¸â íàðàùèâàíèÿ ñëî¸â ñ òîé æå êðèñòàëëè÷åñêîé îðèåíòàöèåé, ÷òî è ó ïîäëîæêè. Ýòî ýïèòàêñèÿ. Ìîæåì íàðàñòèòü òîíêèé ñëîé ìîíîêðèñòàëëà, íî ñ äðóãîé êîíöåíòðàöèåé íîñèòåëåé çàðÿäà.

  • 120. Малошумящие однозеркальные параболические антенны
    Другое Радиоэлектроника