Информация по предмету Радиоэлектроника
-
- 81.
Ионно-сорбционная откачка
Другое Радиоэлектроника
- 81.
Ионно-сорбционная откачка
-
- 82.
Ионосфера и распространение радиоволн
Другое Радиоэлектроника Большой интерес для приёмасигнало высокочастотных КВ диапазонов 16, 13 и 11 м представляют образующиеся в области E прослойки ( точнее облака ) сильно повышенной ионизации. Площадь этих облаков может изменяться от едениц до сотен квадратных километров. Этот слой повышенной ионизации получил название - спорадический слой E и обозначается Es. Облака Es могут перемещаться в ионосфере под воздействием ветра и достигать скорости до 250 км/час. Летом в средних широтах в дневное время происхождение радиоволн за счёт облаков Es за месяц бывает 15 ... 20 дней. В районе экватора он присутствует почти всегда, а в высоких широтах обычно появляется ночью. В годы низкой солнечной активности, когда нет прохождения на высокочастотный КВ диапазонах, иногда, как подарок, на диапазонах 16, 13 и 11 м с хорошей громкостью вдруг появляются дальние станции, сигналы которых многократно отразились от Es.
- 82.
Ионосфера и распространение радиоволн
-
- 83.
Исполнительные и логические устройства
Другое Радиоэлектроника Причиной появления БЛЭ ЭСЛ явилось желание повысить быстродействие цифровых устройств. Это желание привело к использованию в них совершенно отличного от ТТЛ схемотехнического решения. Как было показано выше, основными причинами инерционности ключей, выполненных на биполярных транзисторах, являются время рассасывания неосновных носителей из его базовой области и постоянная времени перезарядки выходной емкости. Если время рассасывания транзистора при работе последнего в активной области может быть полностью исключено, то от влияния постоянной времени перезаряда выходной емкости транзистора полностью избавиться не представляется возможным. Это влияние можно лишь уменьшить путем увеличения коллекторного тока транзистора, как это было сделано в БЛЭ ТТЛ серии 513. При неизменном постоянном токе перезарядка выходной емкости транзистора, длительность его перехода из состояния, классифицируемого как логического 0, в состояние, классифицируемого как логической 1 и обратно может быть уменьшено только за счет уменьшения логического перепада. Такое решение позволяет повысить быстродействие. Однако дается оно за счет снижения помехоустойчивости БЛЭ, что требует создания схем при прочих равных условиях менее подверженных действию помех. Этот принцип и использован при построении БЛЭ ЭСЛ.
- 83.
Исполнительные и логические устройства
-
- 84.
Испытания изделий электронной техники
Другое Радиоэлектроника При плане двухступенчатого контроля число контролируемых изделий равно объему первой выборки, указанному в плане. Если число дефектных изделий, обнаруженных в первой выборке, равно или меньше первого приемочного числа Ac1, партия принимается. Если число дефектных изделий, обнаруженных в первой выборке, равно или превышает первое браковочное число Re1, партия бракуется. Если число дефектных изделий, обнаруженных в первой выборке, находится между первым приемочным и браковочным числами, контролю подлежит вторая выборка, указанная в плане контроля. Числа дефектных изделий, обнаруженные в первой и второй выборках суммируются. Если суммарное число дефектных изделий равно или меньше второго приемочного числа Ac2, партия принимается. Если суммарное число дефектных изделий равно или превышает второе браковочное число Re2, партия бракуется. На рисунке 3 показан ход действия двухступенчатых планов контроля.
- 84.
Испытания изделий электронной техники
-
- 85.
Исследование комбинационных помех в анализаторе спектра миллиметрового диапазона длин волн
Другое Радиоэлектроника В радиотехнике, электронике, технике связи и других отраслях промышленности анализ формы электрических сигналов позволяет получить информацию о качестве радио-устройств, линий связи , технологических процессов и т.д. Сложная периодическая функция времени полностью описы-вается амплитудами и фазами ее спектральных составляющих. В большинстве случаев достаточно иметь информацию об амплитуде и частоте составляющих спектра сигнала , то есть об амплитудном спектре. Загруженность освоенных ВЧ и СВЧ диапазонов, потребность использования радиоэлектронных средств (РЭС) для решения широкого круга новых задач вызвали необходимость дальнейшего расширения частотного диапазона в область мм длин волн. При этом важное значение имеют вопросы исследования неосновных колебаний в ВЧ трактах и радио излучений различных РЭС, а также контроль за рациональным использованием
- 85.
Исследование комбинационных помех в анализаторе спектра миллиметрового диапазона длин волн
-
- 86.
Исследование методов разделения (уплотнения) каналов связи
Другое Радиоэлектроника Рассмотрим особенности построения систем с ЧРК при некоторых способах формирования канальных сигналов. Наиболее простым способом является АМ. Для этого используется амплитудный модулятор (АМд), полосовой фильтр (ПФ). На приемной стороне выделение сообщения производится синхронным детектором или обычным линейным детектором (Д). Особенности спектров сигналов на разных этапах формирования показаны на рис. 2.1.4. Асимметрия амплитудно-частотной характеристики фильтра приводит к искажениям огибающей АМ сигнала и, следовательно, к искажениям выделяемых сообщений. Снизить искажения можно путем уменьшения коэффициента модуляции. При этом снижается уровень квадратурных составляющих модулированного сигнала на входе детектора (Дk), приводящих к искажениям сигнала. Однако уменьшение коэффициента модуляции сопровождается уменьшением мощности боковых составляющих за счет увеличения мощности несущей. Недостатком АМ является большая полоса частот, занимаемая каналом (в 2 раза больше максимальной частоты сообщения). Несмотря на этот недостаток, а также относительно низкую помехоустойчивость, АМ находит применение вследствие простоты аппаратуры.
- 86.
Исследование методов разделения (уплотнения) каналов связи
-
- 88.
Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли
Другое Радиоэлектроника В настоящее время надежно установлено, что Земля и ее магнитное поле погружены в непрерывно текущий поток плазмы солнечного происхождения солнечный ветер. Солнечный ветер, который представляет собой расширение солнечной короны со сверхзвуковой скоростью, несет с собой в космическое пространство магнитное поле Солнца. Магнитное поле Земли взаимодействует с плазмой солнечного ветра, и на геоцентрическом расстоянии примерно между Землей и Солнцем образуется ударный фронт. Основной поток солнечного ветра обтекает Землю и уносит геомагнитное поле в длинный магнитный хвост. Следовательно, Земля окружена магнитной полостью магнитосферой, строение и свойства которой определяются главным образом магнитным полем земли и токами, генерируемыми солнечным ветром. Считают, что частицы солнечного ветра попадают в атмосферу либо через магнитный хвост, либо через полярные каспы с низкой напряженностью магнитного поля, расположенные на дневной стороне Земли. Как известно в магнитосфере протекает множество физических процессов. Многие из них, косвенно связанные с такими давно известными явлениями, как полярные сияния (высыпание частиц в полярных широтах), и магнитные бури, прямо или косвенно обусловлены взаимодействием солнечного ветра и магнитосферы Земли.
- 88.
Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли
-
- 89.
Исследование синхронного сдвигающего регистра на JK-триггере
Другое Радиоэлектроника Чтобы получить выражение, описывающее логику формирования сигналов на входе триггера, используем уравнение: Ji = y · Qi+3 + y · Qi-3 , где i = 1..8, причем если результат подстановки i окажется меньше или равным нулю, то к результату следует прибавить максимальное (в данном случае 8) количество разрядов в проектируемом регистре, если же результат окажется больше максимального количества разрядов (т.е. 8), то из него следует вычесть это максимальное число.
- 89.
Исследование синхронного сдвигающего регистра на JK-триггере
-
- 91.
История возникновения радио и радиолокации
Другое Радиоэлектроника 16 января 1934 года в Ленинградском физико - техническом институте (ЛФТИ) под председательством академика А. Ф. Иоффе состоялось совещание, на котором представители ПВО РККА поставили задачу обнаружения самолетов на высотах до 10 и дальности до 50 км в любое время суток и в любых погодных условиях. За работу взялись несколько групп изобретателей и ученых. Уже летом 1934 года группа энтузиастов, среди которых были Б. К. Шембель, В.В. Цимбалин и П. К. Ощепков, представила членам правительства опытную установку. Проект получил необходимое финансирование и в 1938 году был испытан макет импульсного радиолокатора, который имел дальность действия до 50 км при высоте цели 1,5 км. Создатели макета Ю, Б, Кобзарев, П, А, Погорелко и Н, Я, Чернецов в 1941 году за разработку радиолокационной техники были удостоены Государственной премии СССР. Дальнейшие разработки были направлены в основном на увеличение дальности действия и повышение точности определения координат. Станция РУС- 2 принятая летом 1940 года на вооружение войск ПВО не имела аналогов в мире по своим техническим характеристикам , она сослужила хорошую службу во время Великой Отечественной войны при обороне Москвы от налетов вражеской авиации. После войны перед радиолокационной техникой новые сферы применения во многих отраслях народного хозяйства. Без радаров теперь немыслимы авиация и судовождение. Радиолокационные станции исследуют планеты Солнечной системы и поверхность нашей Земли, определяют параметры орбит спутников и обнаруживают скопления грозовых облаков. За последние десятилетия радиолокационная техника неузнаваемо изменилась.
- 91.
История возникновения радио и радиолокации
-
- 92.
История и развитие радиотехники
Другое Радиоэлектроника Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники ( особенно радиолокации ) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германивые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод ( транзистор ), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов : туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.
- 92.
История и развитие радиотехники
-
- 93.
История развития криоэлектроники
Другое Радиоэлектроника Проблема создания структур на основе контактов СП, приборов и многофункциональных устройств на этих структурах является комплексной. Нужно пройти большой путь от разработки воспроизводимой технологии получения простейших контактов и приборов, например полупроводникового (как это ни странно звучит) криотрона с джозефсоновским вентилем, сверхчувствительных детекторов дальнего ИК диапазона до криоэлектронных приемных устройств и вычислительных систем, в которых необходимо будет найти разумное сочетание различных рассматриваемых структур. Но в целом этот путь полезный и даёт много нового микроэлектронике. Это можно показать в виде условной схемы на рисунке № 1, в которой представлены не только структуры и приборы, о которых выше упоминалось, но и возможные перспективные приборы. Применение рассмотренных структур на основе контактов сверхпроводников с полупроводниками в криоэлектронике открывает новые возможности для создания различных (функциональных приборов: усилителей, детекторов, преобразователей, ПЗС с внутренним усилением, приемников ИК диапазона, линий задержки, регистров сдвига. Сочетание на одном полупроводниковом кристалле нескольких структур, выполненных в одном технологическом цикле, например структур, имеющих параметрические и детекторные элементы, в принципе позволяет поднять чувствительность криоэлектронных приемников прямого усиления до уровня супергетеродинных. Сочетание сверхпроводящих структур с полупроводниковым барьером, в которых при проявлении эффекта Джозефсона частоты принимаемого сигнала могут охватить практически весь ИК диапазон, с регистром сдвига на структурах с зарядовой связью и малошумящими усилительными элементами позволяет создать многоэлементные приемники с самосканированием, работающие в дальнем и сверхдальнем ИК диапазонах. Возможно создание на этой основе и многодиапазонных ПЗС ИК диапазона. При построении сложных интегральных схем на СВЧ микрополосковые линии и резонаторы усилителей могут быть выполнены непосредственно на той части поверхности полупроводникового кристалла, в которой при температурах Т<Тс наступает «вымораживание» носителей заряда и потери становятся примерно такими же, как и в хороших диэлектриках. На эту часть кристалла может быть нанесено и несколько дополнительных связанных пленочных сверхпроводящих резонаторов, образующих сверхпроводниковые СВЧ фильтры, либо преселекторы усилители со сверхпроводниковыми резонаторами, предложенные и рассмотренные для мазера с пассивными сверхпроводниковыми резонаторами, либо Сп болометры. Способность работать при любых условиях охлаждения, вплоть до температур, близких к абсолютному нулю, где отсутствуют тепловые колебания, а шумы кристаллической решетки становятся исключительно малыми, причем ассортимент сверхпроводниковых и полупроводниковых материалов существенно расширен, является одним из ценных свойств рассматриваемых структур, которые базируются на передовой технологии БИС. Тенденция к освоению в микроэлектронике свойств твердого тела при криогенных температурах, проявившаяся благодаря успехам в создании различных криоэлектронных приемных систем на базе сверхпроводников, узкозонных полупроводников и других материалов, неуклонно пробивает себе дорогу. Одновременно, как видно из данной работы, появилась и другая тенденция, созревшая но мере развития электронного материаловедения и функциональной микроэлектроники. Это - переход к созданию в едином технологическом цикле уже не только материалов, например полупроводниковых кристаллов, и не только эпитаксиальных пленок из одного материала, но сначала «простых» полупроводниковых гетероструктур, МДП-структур, вплоть до рассматриваемых сложных структур СП, СПС и др. Эти структуры можно назвать функциональными.
- 93.
История развития криоэлектроники
-
- 94.
История развития сотовой связи
Другое Радиоэлектроника Эта система предшествовала и была причиной многим разработкам сотовой связи, на самом деле, Bell Laboratories' Д.Х. Ринг сформулировал концепцию сотовой связи годом позже в декабре,1947 во внутреннем меморандуме, созданном Рингом с незаменимой помощью от В.Р. Янга. Янг позже вспомнил, что все элементы был известны уже тогда: сеть небольших географических областей названные сотами, передатчик низкой мощности в каждой, поток ячейки, управляемый центральной АТС, частоты, многократно использующиеся другими ячейками и так далее. Янг утверждает, что с 1947 команды Белла "верили, что средства для управления и подключения к множеству небольших ячеек будут развиваться, когда они в них будет потребность. "Авторы в SRI International, в их многотомной истории сотовых телефонов, описывают те далекие дни так: " самое раннее письменное описание концепции сотовой связи появилось в 1947 Техническом меморандуме Bell Labs, созданном Д. H. Рингом. Технический меморандум подробно описал многократное использование частоты в небольших ячейках, которые оставались одним из ключевых элементов разработки сотовой связи с тех пор. Меморандум также описывал handoff, заявляя "Если используется более чем одна первичная частота, должны предусматриваться средства для переключения автомобильного приемника и передатчика на другие частоты. "Ринг не размышляет, как это могло бы реализовываться, и, фактически, его внимание было сосредоточено на том, как могли быть наилучшим образом сэкономлены частоты в различных теоретических системных разработках".
- 94.
История развития сотовой связи
-
- 95.
История развития ЭВМ и практическое применение в обучении
Другое Радиоэлектроника Сейчас разрабатывается основательный вариант «карманного учителя». Даже имя ему придумали: «Сирин». Сирин - волшебный персонаж из русской народной сказки - полуптица, получеловек. А расшифровывается название вполне в духе кибернетического века: « синтезатор речи индивидуальный». Надеемся, что вскоре говорящий «Сирин» появится в школах и будет верным помощником и учителя, и ученика в изучении русского и иностранных языков. Это будет уже не игрушка, а вполне серьезный аппарат с широкими возможностями. Сменные блоки памяти обеспечат практически неограниченный словарный запас. Но компьютер может работать не только со словами. Табло-экран вместит целые предложения и даже небольшие диалоги, которые синтезатор будет произносить с нужной интонацией. Электроника по вашему требованию будет повторять нужный фрагмент хоть сто раз, пока вы твердо не запомните звучание.Остается только пожелать, чтобы этот замечательный аппарат как можно скорее поступил в серийное производство и пришел на помощь всем, кто изучает русский и иностранные языки.
- 95.
История развития ЭВМ и практическое применение в обучении
-
- 96.
История развития электроники
Другое Радиоэлектроника При высоком вакууме разряжение газа между электродами таково, что длина свободного пробега электронов значительно превосходит расстояние между электродами, поэтому при положительном, относительно катода напряжении на аноде Va электроны движутся к аноду, вызывая ток Ia в анодной цепи. При отрицательном напряжении анода Va эмитируемые электроны возвращаются на катод и ток в анодной цепи равен нулю. Таким образом электровакуумный диод обладает односторонней проводимостью, что используется при выпрямлении переменного тока. В 1907 г. американский инженер Ли де Форест установил, что поместив между катодом (К) и анодом (А) металлическую сетку (с) и подавая на нее напряжение Vc можно управлять анодным током Ia практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа триод(рис. 3). Ее свойства как прибора для усиления и генерирования высокочастотных колебаний обусловили быстрое развитие радиосвязи. Если плотность газа наполняющего баллон настолько высока, что длина свободного пробега электронов оказывается меньше расстояния между электродами, то электронный поток, проходя через межэлектродное расстояние взаимодействует с газовой средой в результате чего свойства среды резко изменяются. Газовая среда ионизируется и переходит в состояние плазмы, характеризующееся высокой электропроводностью. Это свойство плазмы было использовано американским ученым Хеллом в разработанном им в 1905 г. газотроне мощном выпрямительном диоде наполненном газом. Изобретение газотрона положило начало развитию газоразрядных электровакуумных приборов. В разных странах стало быстро развиваться производство электронных ламп. Особенно сильно это развитие стимулировалось военным значением радиосвязи. Поэтому 1913 1919 годы период резкого развития электронной техники. В 1913 г. немецкий инженер Мейснер разработал схему лампового регенеративного приемника и с помощью триода получил незатухающие гармонические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции на ламповые, что практически решило проблему радиотелефонии. С этого времени радиотехника становится ламповой. В России первые радиолампы были изготовлены в 1914 году в СанктПетербурге консультантом русского общества беспроволочного телеграфирования Николаем Дмитриевичем Папалекси, будущим академиком АН СССР. Папалекси окончил Страсбургский университет, где работал под руководством Брауна. Первые радиолампы Папалекси изза отсутствия совершенной откачки были не вакуумными, а газонаполненными(ртутными). С 1914 1916 гг. Папалекси проводил опыты по радиотелеграфии. Работал в области радиосвязи с подводными лодками. Руководил разработкой первых образцов отечественных радиоламп. С 1923 1935 гг. совместно с Мандельштамом руководил научным отделом центральной радиолаборатории в Ленинграде. С 1935 года работал председателем научного совета по радиофизике и радиотехнике при академии наук СССР.
- 96.
История развития электроники
-
- 97.
Источник питания
Другое Радиоэлектроника Переменное напряжение питающей сети поступает через предохранитель ПР и сетевой фильтр на выключатель ВК, установленный обычно на панели ВМ. С выключателя сетевое напряжение подводится через термистор к петле размагничивания ЭЛТ и выпрямителю, на выходе которого подключен электрический конденсатор С. На этом конденсаторе получается (при напряжении питающей сети 220 В) постоянное напряжение величиной до 340 В. Для уменьшения стартового тока заряда этого конденсатора в цепь на входе выпрямительного моста иногда включают термистор, который в момент включения имеет сопротивление десятки Ом, а после его нагрева сопротивление падает до нескольких Ом. Это предохраняет диодный мост от чрезмерных перегрузок в момент включения ВМ. Постоянное напряжение от выпрямителя поступает на последовательно соединенные первичную обмотку силового трансформатора и ключевой транзистор для создания импульсов тока в этой цепи. Схема управления ключом обеспечивает задание частоты следования импульсов и их длительности (ШИМ) для регулирования выходных напряжений ИП. Сигнал о величине выходного из выходных выпрямителей В через элемент гальванической развязки, в качестве которого может использовать оптрон или импульсный трансформатор. На схему управления ключом могут поступать также сигналы для синхронизации рабочей частоты ИП с частотой строчной развертки, схем защиты по аварийным перегрузкам и схем отключения ИП при отсутствии на входе импульсов синхронизации от компьютера. Выходные выпрямители, подключенные к вторичным обмоткам силового трансформатора, обеспечивают получение необходимых постоянных питающих напряжений для всех узлов ВМ.
- 97.
Источник питания
-
- 98.
Как работает радиоизмеритель скорости
Другое Радиоэлектроника Четырехлучевая система сочетает в себе достоинства продольной и поперечной двулучевых систем, заключающиеся в значительном уменьшении погрешностей из-за продольного и поперечного кренов аппарата, поскольку их влияние практически компенсируется при вычитании доплеровских смещений противоположно направленных лучей. Сохраняется высокая чувствительность к изменению доплеровского смещения при отклонении оси самолета в горизонтальной плоскости, что позволяет найти угол сноса или поперечную составляющую скорости с высокой точностью. Большим достоинством системы также является снижение требований к кратковременной стабильности частоты, поскольку взаимодействующие сигналы каналов приходят примерно с равных расстояний и их временной сдвиг мал. Практически такие же результаты могут быть получены и при использовании в системе трех лучей.
- 98.
Как работает радиоизмеритель скорости
-
- 99.
Канал последовательной связи на основе МС 8251
Другое Радиоэлектроника Номер контактаСокращениеНаправлениеПолное название1FGОсновная или защитная земля2TD (TXD)К DCEПередаваемые данные3RD (RXD)К DTEПринимаемые данные4RTSК DCEЗапрос передачи5CTSК DTEСброс передачи6DSRК DTEГотовность модема7SGСигнальная земля8DCDК DTEОбнаружение несущей данных9К DTE(Положительное контрольное напряжение)10К DTE(Отрицательное контрольное напряжение)11QMК DTEРежим выравнивания12SDCDК DTEОбнаружение несущей вторичных данных13SCTSК DTEВторичный сброс передачи14STDК DCEВторичные передаваемые данные15TCК DTEСинхронизация передатчика16SRDК DTEВторичные принимаемые данные17RCК DTEСинхронизация приемника18DCRК DCEРазделенная синхронизация приемника19SRTSК DCEВторичный запрос передачи20DTRК DCEГотовность терминала21SQК DTEКачество сигнала22RIК DTEИндикатор звонка23К DCE(Селектор скорости данных)24TCК DCEВнешняя синхронизация передатчика25К DCE(Занятость)
- 99.
Канал последовательной связи на основе МС 8251
-
- 100.
Карьерные автомобильные дороги
Другое Радиоэлектроника
- 100.
Карьерные автомобильные дороги