Информация по предмету Химия
-
- 501.
Синтез метил сульфона 2-аминофенил
Другое Химия В результате серии опытов было выявлено, что сильное влияние на выход продукта (3) оказывают чистота дисульфида натрия, время контакта с атмосферой, скорость подкисления раствора нитротиофенолята. При проведении работы в предыдущем семестре именно эта стадия вызвала наибольшие затруднения. В итоге различные факторы, мешающие получению целевого продукта были учтены и продукт выделен. После фильтрации десятикратно разбавленного раствора нитротиофенолята натрия от непрореагировавшего дисульфида (2), причем, ввиду того, что, благодаря малому размеру частиц дисульфида, фильтр быстро забивался, его приходилось менять 2-3 раза за время фильтрации, фильтрат медленно разбавляют при перемешивании соляной кислотой, при этом выпадают желто-рыжие частички нитротиофенола, а раствор меняет цвет с темно-вишневого на ярко желтый. После этого системе для образования частиц более крупного размера дают немного отстояться, и фильтруют. Полученный после фильтрации тиофенол перекристаллизовывают из спирта и либо сразу метилируют, либо сушат в вакуум эксикаторе над щелочью. Во втором случае перед метилированием нитротиофенол (3) переводят в щелочной раствор и отфильтровывают динитродисульфид (2).
- 501.
Синтез метил сульфона 2-аминофенил
-
- 502.
Синтез слабосшитого полиэлектролита ацетоуксусный эфиракриловая кислота и взаимодействие его с ионами переходных металлов
Другое Химия - Бектуров Е.А., Кудайбергенов С.Е., Хамзамулина Г.Э. Катионные полимеры. Алма-Ата, Наука. 1986.158с.
- Семчиков Ю.Д., Жильцов С.Ф., Камаева В.Н. Введение в химию полимеров. М., 1988. 150с.
- Кушнер В.П. Конформационная изменчивость и денатурация биополимеров. Л.,1977. 275с.
- Лебедев В.С., Гавурина Р.К. Высокомолекулярные соединения. 1964, т-6, № 8, с.1353 1358.
- Шаяхметов Ш.Ш., Кудайбергенов С.Е., Бектуров Е.А. Изв. АН Каз ССР. Сер. хим., 1979, № 3, с.67-70
- Кудайбергенов С.Е., Шаяхметов Ш.Ш., Бектуров Е.А. Высокомол. соед., 1980. Т.Б22. с91-94.
- Текфорд Ч. Физическая химия полимеров. М., 1965, 772 с.
- Лебедев В.С., Логинова Н.Н., Гавурина Р.К. Высокомол. соед., 1964, Т.6, №7, с1174-1180.
- Кабанов В.А. и др. Высокомол. соед., 1977, Т.Б 19, с 95.
- Жаймина Г.М., Бимендина Л.А., Бектуров Е.А. Изв.АН Каз ССР. Сер. хим., 1982, №6.
- Грассели Дж., Снейвили М., Балкин Б. Применение спектроскопии КР в химии. М., 1984. 261 с.
- Барабанов В.П., Вяселева Г.Я., Ярошевская Х.М. Высокомол. соед., 1978, Т.Б 20, с760.
- Таусарова Б.Р. и др. Изв. АН СССР, Сер. хим., 1975, №7, с 1549.
- Бектуров Е.А., Сулейменов И.Э. Полимерные гидрогели. Алматы. «Гылым». 1998. 238с.
- Тагер А.А. Физикохимия полимеров. М.: «Химия», 1978. с.453
- Khoklov A.R., Philippova O.E. // Solvents and Self Organization of Polymers. NATO ASI Series E: 1996. v.327 p.197
- Хохлов А.Р., Доминтонова Е.Е. // Успехи Физ. Наук. 1997. Т.167. № 2. с.113
- Бектуров Е.А., Кудайбергенов С.Е. Физикохимия растворов полимеров Алматы: «Санат», 1993. с.248
- Kazanskii K.S., Dubrovski S.A.// Adv. Polym. Sci. 1992. V. 104. p.97
- H.Bronsted, J. Kopesek. HY-Sensitive Hydrogels. ACS. Polyelectrolyte gels, 1992. P 285
- Шибалович В.Г., Кайденова И.Ю. Исследование влияния природы ионогенных групп на водопоглощающую способность полиакрилатных гидрогелей // в сб.: Тез. Докл. III Всесоюзн. Конф. по водорастворимым полимерам: Иркутск 1987. с.37
- Казанский К.С. и др. Термодинамика сильнонабухающих полимерных гидрогелей //в сб.: Тез. Докл. III Всесоюзн. Конф. по водорастворимым полимерам: Иркутск 1987. с.62
- Агафонов О.А. и др. Гидрогели для повышения влагоемкости почв и песков // в сб.: Тез. Докл. III Всесоюзн. Конф. по водорастворимым полимерам: Иркутск 1987. с.167
- Филиппова О.Е. Высокомолек. соед. Серия С, 2000, Е.42, № 12, с 2328-2332.
- Нуркеева З.С. водорастворимые и водонабухающие полимеры виниловых эфиров гликолей и аминоспиртов // Автореф. Док. Дисс. М.: 1993. с.45
- Ергожин Е.Е., Рафиков С.Р., Уткелов Б.А., Нурахметов К.Н. // Докл. АН СССР. 1989. Т 308. с.1380
- Бектуров Е.А., бимендина Л.А., Мамытбеков Г.К. комплексы водорастворимых полимеров и гидрогелей. Алматы «Гылым». 2002. 220с.
- Яцимирский К.Б. Биологические аспекты координационных соединений. Киев, 1979, 268с.
- Бектуров Е.А., Бимендина Л.А., Кудайбергенов С.Е. Полимерные комплексы и катализаторы. Алма-Ата, Наука, 1982, 191с.
- Бек М. Химия равновесий реакций комплексообразования. М. 1973, 359с.
- Желиговская Н.Н., Черняев И.И. Химия комплексных соединений. М., ВШ, Ciardelli F., Tsuchida E., Wohrle D. macromolecule Metal Complexes. Springer-Vertag, Berlin, 1996
- Wohrle D. // 7-th Intern. Symp. “Makromolekle-Metal Complexes”. Leiden. The Nitherlands. 1997. I 116
- Nsuchida E., Abe K.// Adv. Polym.Sci/ 1982. V.45.P.1
- Saegusa T., Kobayashi S., Yfeashi K., Yamada A. //Polym.J. 1978. V.10 P.403
- Guilbaut L.J., Murano M., Harnwood H.J. // J.Macromol. Sci.Chem. 1973. V.7.P.1065
- Nishide H., Tsuchida E. // Macromol.Chem. 1976. B. 177.S.2453
- Nishide H., Tsuchida E. // Macromol.Chem. 1976. B. 177.S.2295
- Utkelov B.F., Ergozhin E.E. // Macromok.Chem.Macromol.Sump.1989. V.26.P.233
- Utkelov B.A., Nurachmetov K.N., Ergozhin E.E. //Macromok.Chem.Rapid Commun. 1990. V.11.P.1
- Davankov V.A., Semechkin A.V. // J.Chromatogr. 1977. V.41.P.313
- Trochimczuk A.W. // MMC-7, 7-th Intern.Symp.Macromolecule-Metal Complexes.Leiden.The Netherlands. 1997. S105
- Ferruti P., Barbucci R. // Adv.Polym.Sci.1984.V.58.P.57
- Ferruti P.// Polym.Materials Encyclopedia (ed.J.Salamone) CRC Press, Boca Raton. 1996.V.5.P.3334
- Casolarco M. //Polym.Materials Encyklopedia (ed.J.Salamone) CRC Press. Boca Raton. 1996.V.5.P.7979
- Casolaro M., Bignotti F., Sartore L., Penco M. //Polymer. 2001. V.42,P.903
- Hill I.R.C., Garnett M.C., Bignotti F., Davis S.S. //Biochim.Biophys.Acta. 1999.V.161.P.1427
- Анненков В.В. Реакции комплексообразования с участием поливинилазолов. //А.р. дисс.д-ра хим.наук. Иркутск. 2001. 48с.
- Анненков В.В., Аласур И.А., Даниловцева Е.Н. и др. //Высокомол. соед.1999. Т.А41. с.1404
- Анненков В.В., Даниловцева Е.Н., Луненок О.В., Аласур И.А., Сараев В.В. // Изв. РАН. Сер.хим.2001.№ 8.с.1317
- Annenkov V.V., Mazyar N.L., Kruglova V.A., Ananiev S.M. //Abstr. YII Intern.Conf. “The problems of salvation and complex formation in solytion”. Ivanovo. 1998. P.354
- Chan W.C. // Polym.Int.1995.V.38.P.319
- Kudaibergenov S.E. Polyamfolytes: Synthesis, Characterization and Application. Cluver Academic/Plenum Press New York. 2002.214p.
- Kudaibergenov S.E., Khamitzanova G., Bimendina L.A.//Abstr. Intern.Symp. “Makromolecule-metal complexes”. New York.2001.P24
- Kudaibergenov S.E., Koizhaganova R.B., Diduch A.G., Zhumadilova G.T., Bimendina L.A. // Abstr.7-th Pacific Polym.Conf. Microsymp. Sensitive polymers and smart gels. Brazile. Mexico.2001
- Koizhaganova R.B., Kudaibergenov S.E., Geckeler K. //Macromol.Chem.Rapid Commun. (to be publ.)
- Khamitzhanova G., Moution J., Yasharova M. // Proceed. Intern.Monitoring Conf., Semipalatinsk, 2002
- Kudaibergenov S.E., Koizhaganova R.B., Diduch A.G., et al // J.Phys.Chem.
- Lee W.F., Tu Y.M. // J.Appl.Polym.Sci.1999.V.72.P.1221
- Rivas B.L., Maturana H.A., Molina M.J. Gomes-Anton M.R., Pierola I.F.// J.Appl.Polym.Sci 1998. V.67.P.1109
- Оспанова А.К. «Физико-химические основы образования координационных соединений металлов IB, IIB и YIB подгрупп с полиэтиленимином и унитиолом». //А.р.дисс.д-ра хим.наук. Алматы.2002
- Оспанов Х.К., Оспанова А.К. Электрохимические и термодинамические свойства унитиола и унитиолатных комплексов. Алматы. «?аза? университеты».2002.328с.
- Усанович М.И. Исследования в области теории растворов и теории кислот и оснований. Алматы. «Наука». 1970. 365с.
- Пирсон Р.Дж. Жесткие и мягкие кислоты и основания. //Успехи химии. 1971. Т.40.с.1259
- Зезин А.Б., Кабанов В.А. // Успехи химии. 1982.Вып.9.с.1447
- Кабанов Н.М., Кокорин А.И., Рогачева В.Б., Зезин А.Б. Высокомол.соед.1979. Т.А21.с.209
- Кабанов Н.М.Кожевникова Н.А., Кокорин А.И., Рогачева В.Б., Зезин А.Б., кабанов В.А. // Высокомол.соед.1979.Т.А21.с.1891
- Кабанов Н.М., Хван А.М., Рогачева В.Б., зезеин А.Б., Кабанов В.А. // Высокомол.соед.1979.Т.Б21.с535
- Sarac A.S., Ustamehmetoglu B., Mustafaev M.I., Erbil C., Uzelli G. // J.Polym.sci.part A: Polym.chem.1995.V.33.P.1581
- Ustamehmetoglu B., baykeln S., Sunmez G., Sarac A.S. // J.Polym.sci.Part A: Polym.Chem. 1999.V.37.P.1115
- Bronstein L.m., Platonova O.A., Yakin A.N. et al. // Langmuir.1998. V.14.P.259
- Бектурганова Г.К., Бимендина Л.А., мамытбеков Г.К., Бектуров Е.А. // изв.МН-АН РК.Сер.хим. 1998 №3.с22
- Bimendina L.A., Bekturganova G.K., Bekturov E.A. // 8-th Intern.Conf.Polymer Based Adv.Adv.Techn. (POC98).1998
- Bimendina L.A., Bekturganova G.K., Nolendina A.K., Bekturov E.A. //MRC. Boston.1998
- Macromolecular Interactions.Eds.Ratajizak H.,Orwille W.J. Thomas Willey Interscience Publ.1981
- Джумадилов Т.К., Бектуров Е.А., Бектурганова Г.К. Ион-дипольные комплексы неионных полимеров. Алматы. «Эверо». 2002. 179с.
- Molyneux P. Sunthetic Polymers in Water. London. 1975.V.4.Ch.7
- 502.
Синтез слабосшитого полиэлектролита ацетоуксусный эфиракриловая кислота и взаимодействие его с ионами переходных металлов
-
- 503.
Синтетические возможности реакции Вильсмейера-Хаака-Арнольда
Другое Химия 7.15 м (4Н), 7.18 м (Н-2', H-6'), 7.4 м (H-5', H-3'), 7.85 д (Н-5, JHH
- 503.
Синтетические возможности реакции Вильсмейера-Хаака-Арнольда
-
- 504.
Системы регистрации и обработки данных
Другое Химия Современный хроматограф для ВЭЖХ является прибором, материалы которого в процессе работы подвергаются сильным химическим и механическим воздействиям. Жидкостный тракт хроматографа подвергается воздействию воды, водных растворов кислот, щелочей и солей, при этом нередко при повышенной температуре, а также воздействию разнообразных органических растворителей, окислителей и восстановителей, при этом такое воздействие проводится при самых неблагоприятных условиях при высоком давлении и на детали, подвергающиеся сильным механическим нагрузкам. Это предъявляет к конструкционным материалам приборов и оборудования чрезвычайно высокие требования, которым не все приборы отвечают, особенно для наиболее сложных условий работы. Часто, сталкиваясь с необходимостью вводить в конструкцию хроматографа новые узлы и детали, нередко изготовляемые самим исследователем или не предназначенные для ВЭЖХ, допускаются грубые ошибки в выборе конструкционных материалов, приводящие к катастрофическим последствиям (коррозионное или механическое разрушение узлов хроматографа, забивка каналов капилляров и фильтров, порча колонок и сорбентов и т.п.). Основными конструкционными материалами для ВЭЖХ являются коррозионно-устойчивая нержавеющая сталь, спецсплавы (значительно реже), стекло, керамические материалы (рубин, сапфир), полимерные материалы (в основном с наполнителями). Отечественные приборы, как правило, изготавливают из нержавеющей стали Х18Н9Т. Основным конструкционным материалом для импортного оборудования является нержавеющая сталь марки 316, отличающаяся высокой коррозионной стойкостью и механической прочностью. Как правило, нержавеющие стали достаточно коррозионно-устойчивы к обычно используемым в ВЭЖХ растворителям [126]. Исключение составляют некоторые сильные органические кислоты (муравьиная, щавелевая, трихлоруксусная, трифторуксусная и др.) в определенном диапазоне концентраций, хлорсодержащие растворители (метиленхлорид, хлороформ, тетрахлорид углерода и др.), особенно в сочетании с полярными модификаторами типа спиртов. Когда возникает необходимость в использовании таких растворителей или модификаторов, всегда следует проверить коррозионную устойчивость нержавеющей стали, использованной в данном приборе, к этим средам. Сильную коррозию могут вызвать некоторые сильные и разбавленные неорганические кислоты, а также некоторые соли. Особенно опасным является действие хлорводородной кислоты и ее солей в кислых средах при рН<7. В этом случае возможной является так называемая точечная коррозия, которая развивается на границах кристаллов металла и способна образовать тонкие, но чрезвычайно глубокие отверстия даже в толстостенных деталях из нержавеющей стали. Поэтому следует очень осторожно подходить к системам растворителей, разработанным для классической колоночной ЖХ и ТСХ и использующим НСl, NaCI и подобные компоненты, не действующие на классические колонки из стекла, на полимерные трубки и вполне пригодные для однократного разделения на сорбенте, но коррозирующие приборы для ВЭЖХ и сорбенты в колонках, используемые многократно. Особенно внимательно следует подходить к введению в конструкцию хроматографа деталей, изготовленных из другого металла, будь это сварка, припайка, конус или фильтр из титана, никеля, серебра или сплава. В случае электропроводящего растворителя при этом всегда возникает электрическая пара (гальванический элемент) и начинается уже не просто химическое, а электрохимическое разрушение одного из металлов с образованием продуктов коррозии, уменьшением прочности соединения и т.д. В этом случае прибор, долго и устойчиво работавший в неэлектропроводящих растворителях, может выйти из строя при смене растворителя на электропроводящий за несколько дней или даже часов. Такими узлами, где наиболее вероятно использование других металлов, обычно являются манометры (заварка конца трубки Бурдона, ее приварка к телу манометра), демпферы некоторых типов (приварка капилляров к сплющенным трубкам демпфера), некоторые инжекторы, колонки и т.д. В рационально разработанной и выполненной конструкции все соединения должны выполняться с использованием конусов из того же металла или уплотнений с использованием высокоинертных полимеров. Стекло используют в конструкциях современных хроматографов довольно редко, главным образом из-за его хрупкости я плохой работы на разрыв, хотя его химическая инертность известна. Методы упрочнения стекла путем закалки, нанесений упрочняющих пленок и другие приемы позволяют до известной степени преодолеть традиционную хрупкость стекла. В таком виде его используют для создания малых шприцевых насосов (например, в отечественном микроколоночном приборе «Милихром») на 56 МПа, колонок на 38 МПа, микрошприцев высокого давления. Тем не менее, следует иметь в виду, что хотя современные методы позволяют очень сильно упрочнить стекло некоторых марок (например, колонки для ВЭЖХ из стекла производства ЧССР выдерживают при набивке давление 60 МПа и больше), тем не менее любой возникающий при работе на поверхности такого изделия дефект (царапина, трещина, растворение покрытия) могут привести к мгновенному разрушению изделия и выходу хроматографа из строя. Необходимы чехлы, защищающие от поражения осколками. Рубин и сапфир ввиду их высокой твердости и возможности их обработки до очень высокого класса чистоты используют для изготовления поршней и шариковых клапанов с их седлами. Они работают надежно и обладают высокой химической устойчивостью к растворителям, солям, кислотам и щелочам. Полимерные материалы, используемые в ВЭЖХ, можно разделить на группы, различающиеся по прочности, химической стойкости и другим характеристикам. Резины разных типов находят применение, особенно в старых приборах или предназначенных для учебных целей, в качестве мембран для ввода пробы в инжекторы с использованием микрошприцев высокого давления. Для систем обращенно-фазных рекомендуется использовать мягкую силиконовую резину, нормально-фазных материалы на основе фторкаучука или нитрильных каучуков. Тем не менее все резины в большей или меньшей степени набухают в растворителях, выдерживают 2040 вводов пробы до потери герметичности, загрязняют колонку продуктами разрушения мембраны, выделяют в растворитель стабилизаторы, пластификаторы, вулканизующие и другие добавки. Чем выше давление, тем труднее работать с такими мембранами. Попытки улучшить свойства таких мембран путем нанесения фторопластового покрытия со стороны растворителя дают только кратковременный эффект: после прокола защитные свойства покрытия практически не играют роли. Иногда резины применяют в качестве материала поршней или уплотнений поршней (колец) шприцев, однако их применение для ВЭЖХ также ограничено из-за набухания во многих растворителях. В ВЭЖХ находят применение капиллярные трубки для соединений, шприцы, корпуса разовых микрофильтров, концентраторы проб, уплотнения поршней, колпачки для закрывания колонок из полиэтилена, полипропилена и их сополимеров, а также из других полиолефинов. Однако механическая прочность таких капилляров невысока, они набухают и растворяются в ряде растворителей. Те же недостатки и у шприцев их в основном используют для работы с водой, метанолом, ацетонитрилом. Некоторые фирмы используют наполненный полиэтилен для изготовления уплотнений поршней некоторых насосов, что является особенно нежелательным и опасным, так как ряд растворителей (таких как тетрагидрофуран, хлороформ, толуол) быстро разрушает такие уплотнения, при этом наполнитель попадает в поток растворителя и забивает капилляры, фильтры и Другие узлы. На это следует обращать особое внимание при выборе насоса для ГПХ, в который часто приме. няют такие растворители. Полиэфиры, такие как найлон-66, находят применение в ВЭЖХ в качестве материала для фильтров с малыми порами (0,21,0 мкм), устойчивых к действию практически всех основных растворителей для ВЭЖХ и используемых для очистки от взвешенных микрочастиц растворителей и образцов. Для этих целей применяют некоторые полиамиды. Эти материалы используют также для изготовления других вспомогательных изделий. Широкое применение находят фторопласты разных типов как в незаполненном, так и в наполненном виде. Из них изготавливают капилляры и трубки, уплотнения разного типа. Их химическая инертность совершенно уникальна, механическая прочность высокая, некоторые виды обладают достаточной прозрачностью, термостойкость фторопластов высокая (они не разлагаются в заметной степени до температур около 250300 °С). Капилляры из толстостенного тефлона выдерживают давления до 1015 МПа и более. Для соединения таких капилляров друг с другом на их концах обычно с помощью специального приспособления термомеханически или механически формуют фланцы, сдавливанием которых вместе специальными фитингами получают герметичное и полностью инертное соединение. Как конструкционный материал фторопласт имеет один серьезный недостаток: он обладает в незаполненном виде хладотекучестью, что приводит к необходимости либо вводить препятствующие этому наполнители (например, графитовые волокна), либо заключать фторопластовые уплотнения в камеры, исключающие свободные объемы и предотвращающие его вытекание в нагруженном состоянии. В наполненном виде фторопласт является наилучшим материалом для уплотнений поршней (обычно наполнитель также высоко инертный химически, например графитовые волокна), хорошо он работает и в уплотнениях инжекторов, если температура их работы невысока. В последнее время широкое применение находят новые высоко термостойкие и устойчивые к действию растворителей, обладающие хорошими механическими свойствами полимеры, такие как полиимиды (например, материал «Веспел» фирмы Дюпон). Они, в отличие от фторопластов, не обладают текучестью и при повышенных температурах, что позволяет использовать их для уплотнений инжекторов, работающих при повышенных температурах (особенно это важно в ГПХ). Высокие конструкционные свойства таких материалов позволили создать конусные уплотнения для капилляров, которые легко герметизируются и позволяют работать при давлениях, превышающих 35 МПа с фитингами разных видов и типов, легко присоединять колонки с фитингами разной формы. Недостатком этих материалов является несколько более низкая, чем у фторопласта, химическая инертность: они набухают и утрачивают свои свойства в некоторых растворителях при повышенных температурах.
- 504.
Системы регистрации и обработки данных
-
- 505.
Современные дизельные, судовые и тяжелые моторные топлива
Другое Химия Показатели Норма дня марок Л 3 А Цетановое число, не менее 45 45 45 Фракционный состав: 50 % перегоняется при температуре, °С, не выше 280 280 255 90 % перегоняется при температуре (конец перегонки), °С, не выше 360 340 330 Кинематическая вязкость при 20 °С, ммг/с 3,0-6,0 1,8-5,0 1,5-4,0 Температура застывания, °С, не выше, для климатической зоны: умеренной -10 -35 - холодной - -45 -55 Температура помутнения, °С, не выше, для климатической зоны: умеренной -5 -25 - холодной --35 - Температура вспышки в закрытом тигле, °С, не ниже: для тепловозных и судовых дизелей и пазовых турбин 62 40 35 для дизелей общего назначения 40 35 30 Массовая доля серы, %, не более, в топливе: Вида I 0,20 0,20 0,20 вида II 0,50 0,50 0,40 Массовая доля меркаптановой серы, %, не более 0,01 0,01 0,01 Содержание фактических смол, мг/100 см3 топлива, 40 30 30 не более Кислотность, мг КОН/100 см3 топлива, не более 5 5 5 Йодное число, г I2/100 г топлива, не более 6 6 6 Зольность, %, не более 0,01 0,01 0,01 Коксуемость 10 %-ного остатка, %, не более 0,20 0,30 0,30 Коэффициент фильтруемости, не более 3 3 3 Плотность при 20 °С, кг/м3, не более 860 840 830 Примечание. Для топлив марок Л, 3, А: содержание сероводорода, водорасворимых кислот и щелочей, механических примесей и воды отсутствие, испытание на медной пластинке выдерживают.
- 505.
Современные дизельные, судовые и тяжелые моторные топлива
-
- 506.
Современные конструкции фильтровальных аппаратов
Другое Химия Скорость фильтрования на медленных фильтрах при форсированном режиме не должна превышать 0,2 ... 0,3 м/ч. В случае невыполнения этого требования либо увеличивают число фильтров, либо уменьшают скорость фильтрования при нормальном режиме. Медленные фильтры при очистке со снятием верхнего слоя песка рекомендуется применять на станциях безреагентной очистки с производительностью с 1000 м3/сут при мутности исходной воды до 50 мг/л. При большей 'мутности сильно сокращается продолжительность рабочего периода, и фильтры приходится часто чистить. При гидравлическом смыве загрязнений пленки (без удаления песка) на медленных фильтрах можно осветлять воду с большой мутностью до 1500 мг/л. Их можно применять на станциях с любой производительностью. Когда мутность воды в источнике превышает допустимую, необходимо перед медленными фильтрами воду предварительно осветлять в горизонтальных отстойниках или на предвариельных фильтрах (так называемых префильтрах). Префильтры также рекомендуется применять при большом содержании в воде планктона мельчайших водорослей, развивающихся летом преимущественно в водах озер и водохранилищ. Попадая на медленные фильтры, планктон увеличивает потери напора, а, следовательно, и число чисток фильтров. Префильтры представляют собой крупнозернистые песчаные фильтры с крупностью зерен 1 ... 2 мм и толщиной фильтрующего слоя 0,7 м. Скорость фильтрования воды на префильтрах от 3 до 5 м/ч (в зависимости от мутности). Префильтры очищают путем промывки обратным током воды. Конструкция префильтров во многом сходна с конструкцией скорых фильтров, описанных выше. Предварительное осветление воды в ряде случаев требуется только во время паводка или цветения воды, т. е. в теплое время года. Это позволяет строить префильтры на открытом воздухе без перекрытия, что удешевляет их стоимость. Вместо префильтров для борьбы с планктоном можно применять также микрофильтры. Недостатками медленных фильтров являются их значительная строительная стоимость и большая занимаемая ими площадь (при производительности 2000 м3/сут для фильтров необходима площадь 1 га), что главным образом и послужило причиной для отказа от применения их на крупных водоочистных комплексах. Простота эксплуатации (ввиду отсутствия сооружений для коагулирования взвеси) обусловливает целесообразность их использования при известных условиях на малых установках.
- 506.
Современные конструкции фильтровальных аппаратов
-
- 507.
Современные направления развития композитов на основе полимеров
Другое Химия Кроме прочности и теплостойкости для практики важна малая плотность ПКМ: в пределах 1,2 1,9 кг/м3, что в 1,53 раза ниже, чем плотность самых легких авиационных сплавов. Достоинства композитов этим не исчерпываются. Отметим здесь -такие качества, как «нечувствительность» к надрезу, небольшая скорость распространения трещин и высокая усталостная прочность, т. е. прочность при действии многократно повторяющейся нагрузки. По отношению усталостной прочности к массе композиционные материалы превосходят титановые сплавы, отличающиеся высоким значением этого показателя. К достоинствам композитов следует отнести и возможность изготовления из них изделий любой сложной формы. Хорошо проявили они себя и при получении крупногабаритных конструкций из минимального числа отдельных деталей методами формования. Формованные изделия отличаются меньшей стоимостью и лучшим качеством, при этом снижаются и затраты труда. Изделия из ПКМ, защищенные соответствующим покрытием, обладают большей коррозионной устойчивостью, чем металлы. І Еще одно специфическое достоинство полимерных композитов радиопрозрачность, т. е. способность почти не отражать сигналы радарных установок. Поэтому летательные аппараты из ПКМ будут менее уязвимыми для систем обнаружения. Причина радиопрозрачности ПКМ хорошие диэлектрические свойства полимерной матрицы и, как правило, армирующих ее волоконец. Однако в качестве армирующего наполнителя могут быть использованы материалы с самыми разнообразными электрофизическими свойствами. Так, на основе полимера, наполненного сажей или измельченным графитом, в начале 1950-х годов получены были электропроводящие 1IKM, которые нашли применение для самых разнообразных целей. Здесь и изготовление нагревательных элементов для обогрева помещений, обогрева открытых установок на химических заводах, и создание устройств для электроподогрева железобетонных конструкций, инкубаторов, теплиц. Эти материалы незаменимы при изготовлении неэлектризующихся транспортерных лент для угольных шахт и цехов взрывоопасных производств.
- 507.
Современные направления развития композитов на основе полимеров
-
- 508.
Соединения, изолируемые перегонкой с водяным паром: кетоны - ацетон
Другое Химия При тяжелых отравлениях ацетоном применяют гемодиализ и гемосорбцию.
- Гемосорбция (гемоперфузия) является одним из способов искусственной детоксикации организма. Этот метод основан на поглощении сорбентами ядовитых веществ, находящихся в крови. При гемосорбции в качестве сорбентов в основном применяются активированный уголь и ионообменники (иониты). Гемосорбцию проводят с помощью прибора (детоксикатора), снабженного насосом для перекачивания крови и набором колонок (капсул), содержащих указанные выше сорбенты. Этот аппарат с помощью специального приспособления подключают к кровотоку больного. Кровь, проходящая через сорбенты, освобождается от токсических веществ, которые поглощаются этими сорбентами.
- Гемодиализ один из эффективных методов ускорения выведения токсических веществ из организма. Он основан на явлении диализа, используемого для освобождения крови от токсических веществ. Гемодиализ проводится с помощью аппарата, известного под названием «искусственная почка». Этот аппарат снабжен полупроницаемой мембраной, через которую из крови переходят токсические вещества в процессе гемодиализа.
- 508.
Соединения, изолируемые перегонкой с водяным паром: кетоны - ацетон
-
- 509.
Сорбенты
Другое Химия Однако, если поставить вопрос в другой форме, а именно: какой сорбент теоретически является идеальным для обращенно-фазной хроматографии и каким требованиям должен отвечать соответствующий реальный сорбент ответить можно более конкретно. Идеальным для обращенно-фазной хроматографии следует считать сорбент, обеспечивающий «чисто обращенно-фазное» взаимодействие растворенного вещества с его поверхностью, т.е. при полном отсутствии влияния адсорбции, взаимодействия с полярны. ми группами, ионообменных и эксклюзионных процессов. Исходя из этого, приближающийся к идеальному реальный сорбент должен иметь максимально полное покрытие поверхности мономолекулярным слоем привитой фазы, в нем должны отсутствовать доступные для взаимодействия с анализируемыми веществами силанольные и другие полярные группы или группы с ионообменными свойствами, он должен иметь минимальное количество таких групп, которые экранированы и недоступны для подобных взаимодействий (теоретически), и иметь поры, практически исключающие вклад в удерживание анализируемых веществ эксклюзионных процессов. Такой сорбент должен, по имеющимся представлениям, иметь поры размером 1030 нм (для анализа веществ с молекулярной массой до 8001000). Перед прививкой поверхность сорбента должна быть полностью гидроксилирована, однако сорбент не должен содержать адсорбированной воды. Прививку следует проводить с использованием монохлорсиланов, например октадецилдиметилхлорсилана, в условиях, обеспечивающих наиболее полное протекание реакции с силанольными группами. После окончания прививки проводят «энд кеппинг», т.е. обработку триметилхлорсиланом для окончательного устранения доступных силанольных групп на поверхности сорбента. Наконец, сорбент должен быть полностью отмыт после окончания реакции от всех остатков использовавшихся рактивов и побочных продуктов реакции.
- 509.
Сорбенты
-
- 510.
Сорбция и ее виды
Другое Химия Абсорбция в химии <http://ru.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BC%D0%B8%D1%8F> - физический или химический феномен <http://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D0%BD%D0%BE%D0%BC%D0%B5%D0%BD> или процесс <http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81>, при котором атомы <http://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BE%D0%BC%D1%8B>, молекулы <http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8B> или ионы <http://ru.wikipedia.org/wiki/%D0%98%D0%BE%D0%BD%D1%8B> входят в какоё-либо объёмное состояние - газ <http://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%B7>, жидкость <http://ru.wikipedia.org/wiki/%D0%96%D0%B8%D0%B4%D0%BA%D0%BE%D1%81%D1%82%D1%8C> или твёрдое тело <http://ru.wikipedia.org/wiki/%D0%A2%D0%B2%D1%91%D1%80%D0%B4%D0%BE%D0%B5_%D1%82%D0%B5%D0%BB%D0%BE>. Это процесс, отличный от адсорбции <http://ru.wikipedia.org/wiki/%D0%90%D0%B4%D1%81%D0%BE%D1%80%D0%B1%D1%86%D0%B8%D1%8F>, поскольку молекулы, подвергающиеся абсорбции, забираются по объёму, а не по поверхности (как происходит в случае с адсорбцией). Более общий термин - сорбция, который охватывает процессы абсорбции, адсорбции <http://ru.wikipedia.org/wiki/%D0%90%D0%B4%D1%81%D0%BE%D1%80%D0%B1%D1%86%D0%B8%D1%8F> и ионного обмена <http://ru.wikipedia.org/wiki/%D0%98%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BE%D0%B1%D0%BC%D0%B5%D0%BD>. Абсорбция, в основном - это где что-то присоединяет другую субстанцию.
- 510.
Сорбция и ее виды
-
- 511.
Состав нефти
Другое Химия Характеристика битумов, используемых в производстве защитных продуктов. Структурной единицей смолисто-асфальтеновых веществ являются конденсированные бензольные кольца с гетероатомами, образующие плоскую геометрическую фигуру с боковыми заместителями в виде алкильных цепей и нафтеновых колец. Располагаясь параллельно друг другу, такие структуры образуют микроассоциаты (пачки, микромицеллы, глобулы), отделенные масляной прослойкой друг от друга. При растворении битумов в нефтяном растворителе или минеральном масле такие ассоциаты не только расплываются, удаляясь друг от друга, но и перестраиваются, причем часть молекул или микроассоциатов (квадруполей, мицелл) переходит в раствор, обеспечивая всей системе поверхностную активность. Увеличивается количество парамагнитных частиц и комплексов стабильных радикалов. При введении в этот раствор сильных маслорастворимых ПАВ, маслорастворимых ингибиторов коррозии происходит дальнейшая перестройка коллоидной системы. Часть ингибиторов сорбируется на макроассоциатах битума, образуя своеобразные двойные электрические слои вокруг них. Однако под воздействием ПАВ - МИК - значительная часть битумных макроассоциатов разрушается и включается по принципу внутримицеллярной или надмицеллярной солюбилизации в мицеллярную структуру ингибитора.
- 511.
Состав нефти
-
- 512.
Состав, структура и синтез ионообменных смол
Другое Химия В зависимости от типа ионогенной группы ионообменные смолы разделяют на катионообменные и анионообменные. Катионообменные смолы, или полимерные катиониты, содержат кислотные группы: сульфогруппы, фосфиновокислые, карбоксильные, мышьяковокислые, селеновокислые и др. Анионообменные смолы, или полимерные аниониты (высокомолекулярные нерастворимые полиоснования), включают группы основного характера, четвертичные аммониевые, третичные сульфониевые, четвертичные фосфониевые основания, третичные, вторичные и первичные амины. Известны также амфотерные ионообменные смолы (амфолиты), содержащие одновременно кислотные и основные группы. К специфичным ионообменным смолам относят комплексообразующие ионообменные смолы, обладающие ярко выраженными селективными свойствами, и окислительно-восстановительные ионообменные смолы, включающие в свой состав системы типа Cu+2/Cu, Fe+3/Fe+2 и др., способные к обратимому окислению или восстановлению.
- 512.
Состав, структура и синтез ионообменных смол
-
- 513.
Специальные варианты высокоэффективной жидкостной хроматографии
Другое Химия Серийно выпускают хроматографы, предназначенные для микроколоночной ВЭЖХ, различные зарубежные фирмы. Следует отметить микроколоночный хроматограф «Фэмилик 300 С» фирмы «Джаско», имеющий трехплунжерный насос, микроинжектор вместимостью 1 и 3 мкл, спектрофотометр «Увидек 100 V» с кюветой вместимостью 1 мкл при 5мм длины оптического пути и флюориметрический детектор с кюветой вместимостью 2 мкл. Эта фирма имеет большой опыт в производстве микроколоночных хроматографов, так как она выпустила в продажу первый микроколоночный хроматограф «Фэмилик 100» в 1976г. Интересен микроколоночный хроматограф фирмы «Иско», имеющий шприцевой насос вместимостью 50 мл и давлением 70 МПа с подачей растворителя от 0,02 до 600 мкл/мин, микроинжектор вместимостью 0,1 мкл и спектрофотометрический детектор с кюветами разной вместимости и длины оптического пути от 0,5 мкл и 10мм до 0,03 мкл и 1мм. Градиентную микроколоночную систему с двумя шприцевыми насосами выпустила фирма «Броунли Лабс»; систему с двумя и тремя растворителями предлагает фирма «Хьюлетт-Пакард». Набор гибких микроколоночных хроматографов разработан фирмой «Жилсон» от простейшего изократического с подачей растворителя от 0,5 мкл/мин при 42 МПа, с микроинжектором на 1 мкл и УФ-детектором на 254 и 280 нм с микрокюветой 1,3 мкл при 5мм до градиентного хроматографа, имеющего в качестве детектора спектрофотометр с такой же микрокюветой или флюориметрический детектор с микрокюветой. Широкий набор спектрофотометров с микрокюветами вместимостью 0,5 мкл при 1мм длины оптического пути выпускает фирма «Кратос»; она же выпускает флюориметрические детекторы с микрокюветами. Изократические хроматографы для микроколоночной ВЭЖХ выпускают фирмы «Шимадзу», «Кнауэр», «ЛК.Б», «Байо-Рэд», «Вариан», «Лаборатори Дэйта Контрол» и др.
- 513.
Специальные варианты высокоэффективной жидкостной хроматографии
-
- 514.
Спирты
Другое Химия ведёт к возникновению гастрита язвенной болезни желудка , двенадцатой кишки . Печень , где должно происходить разрушение спирта , не справляясь с нагрузкой , начинает перерождаться в результате возможен цирроз . Проникая в головной мозг спирт отравляюще действует на нервные клетки , что проявляется в нарушении сознания , речи , умственных способностей , в появлении , тяжёлых психических растройств и ведёт к деградации личности . Особенно опасен алкоголь для молодых людей , так как в растущем организме интенсивно протекают процессы обмена веществ и они особенно чувствительны к алкоголическому воздействию . Поэтому у молодых быстрея , чем у взрослых , может появиться заболевание алкоголизм .
- 514.
Спирты
-
- 515.
Сплавы
Другое Химия Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Он имеет красивый внешний вид. Из мельхиора изготавливают посуду и украшения, чеканят монеты («серебро»). Похожий на мельхиор сплав -нейзильбер -содержит, кроме 15% никеля, до 20% цинка. Этот сплав используют для изготовления художественных изделий, медицинского инструмента. Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве электроизмерительных приборов. Характерная особенность всех медно-никелевых сплавов - их высокая стойкость к процессам коррозии - они почти не подвергаются разрушению даже в морской воде. Сплавы меди с цинком с содержанием цинка до 50% носят название латунь. Латунь "60" содержит, например, 60 весовых частей меди и 40 весовых частей цинка. Для литья цинка под давлением применяют сплав, содержащий около 94% цинка, 4% алюминия и 2% меди. Это дешевые сплавы, обладают хорошими механическими свойствами, легко обрабатываются. Латуни благодаря своим качествам нашли широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров. Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы. Из латуней изготавливают трубы для радиаторов автомашин, трубопроводы, патронные гильзы, памятные медали, а также части технологических аппаратов для получения различных веществ.
- 515.
Сплавы
-
- 516.
Сплавы металлов
Другое Химия Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Температура плавления мельхиора составляет 1170 °С. Он имеет красивый внешний вид. Из мельхиора изготавливают посуду и украшения, чеканят монеты («серебро»). Похожий на мельхиор сплав - нейзильбер - содержит, кроме 15% никеля, до 20% цинка. Этот сплав используют для изготовления художественных изделий, медицинского инструмента. Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве электроизмерительных приборов. Характерная особенность всех медно-никелевых сплавов - их высокая стойкость к процессам коррозии - они почти не подвергаются разрушению даже в морской воде. Сплавы меди с цинком с содержанием цинка до 50% носят название латунь. Латунь "60" содержит, например, 60 весовых частей меди и 40 весовых частей цинка. Для литья цинка под давлением применяют сплав, содержащий около 94% цинка, 4% алюминия и 2% меди. Это дешевые сплавы, обладают хорошими механическими свойствами, легко обрабатываются. Латуни благодаря своим качествам нашли широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров. Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы. Из латуней изготавливают трубы для радиаторов автомашин, трубопроводы, патронные гильзы, памятные медали, а также части технологических аппаратов для получения различных веществ.
- 516.
Сплавы металлов
-
- 517.
Способы кристаллизации
Другое Химия На диаграмме растворимости (рис. 1) охлаждение горячего ненасыщенного раствора, имеющего температуру t1 и концентрацию C1 (точка А), до конечной температуры t2 условно можно изобразить линией АС, которая пересекает кривую растворимости в точке В, характеризующей насыщенное состояние раствора при температуре t1'. Если кристаллизация раствора начинается только после его охлаждения до температуры t2, при которой и заканчивается полное снятие пересыщения, то процесс кристаллизации изобразится линией CD, а конечное состояние раствораточкой D на кривой растворимости, соответствующей равновесной концентрации C2.
- 517.
Способы кристаллизации
-
- 518.
Способы получения и свойства бутилкаучука
Другое Химия Необходимая дозировка раствора катализатора определяется чистотой применяемых мономеров и растворителя. Как правило, при получении бутилкаучука расходуется 0,025 0,035 % хлорида алюминия от массы мономеров. Раствор катализатора готовят пропусканием очищенного метилхлорида через аппарат, заполненный гранулированным безводным хлоридом алюминия, при 300С. Прим этом вследствие ограниченной растворимости хлорида алюминия в метилхлориде получается раствор, имеющий постоянную концентрацию катализатора 1% (масс.). Насыщенный раствор хлорида алюминия разбавляется в трубопроводе метилхлоридом до рабочей концентрации 0,1 % (масс.), охлаждается до 930С в этиленовом холодильнике и подаётся на полимеризацию. Все операции по приготовлению раствора катализатора осуществляется в атмосфере осушенного азота. Шихта приготовляется смешением осушенных и очищенных от вредных примесей изобутилена, изопрена и возвратной изобутилен-метилхлоридной фракции в соотношении, определяемом маркой выпускаемого каучука. После охлаждения до температуры 96 - - 980 С шихта подаётся в полимеризатор.
- 518.
Способы получения и свойства бутилкаучука
-
- 519.
Способы получения радионуклидов для ядерной медицины
Другое Химия Этот радионуклид получается в процессе распада продукта деления 90Sr. Основной проблемой безопасного клинического использования 90Y является его полное отделение от 90Sr, 90Sr может вызывать депрессию костного мозга накапливаясь в скелете. Кроме того, как и в других случаях получения радионуклидов для медицинских целей, имеются строгие требования к количеству химических примесей, которые могут подавлять процесс лечения. Невозможно получить конечный продукт с такими строгими требованиями в одну стадию. Поэтому технология отделения 90Y от 90Sr включает несколько стадий разделения и очистки. Wire and comp. (1990) кратко описывают применение различных многостадийных систем для производства 90Y высокого качества для применения в медицине. Каждый из этих методов имеет собственные ограничения. Так использование органических ионообменников ограничивается низкой радиационной стабильностью сорбента. Применение метода соосаждения требует добавления носителя (нерадиоактивногоY). Авторы описывают технологию получения больших количеств 90 Y (около 50 Ки за операцию), используя экстракцию 90Y из 90Sr c последующей дополнительной очисткой конечного продукта на ионообменных сорбентах. Экстракция 90Y осуществляется 1,0 М раствором Д2ЭГФК в додекане из 0,1 М раствора соляной кислоты, содержащего 90Sr. Затем экстракт трижды промывают равными объемами 0,1 М раствора соляной кислоты для удаления следов 90Sr. 90Y реэкстрагируется двумя порциями 6,0 М НСl при соотношении фаз 1:1. После реэкстракции водная фаза испаряется и осадок растворяется в 0,1 М НСl. Затем 90Y снова экстрагируется 1,0 М раствором Д2ЭГФК в додекане и 4 раза промывается 0,1 М НСl. Две порции по 30мл. 9 М НСl используется для второй реэкстракции. Полученный водный раствор 90Y пропускается через анионо-обменный сорбент для удаления примесей. Элюат испаряется, растворяется в 0,1 М НСl и пропускается через колонку с катионо-обменным сорбентом для удаления органических примесей и фосфатов. Элюат и промывные растворы (НСl) объеденяются вместе, испаряютися до суха и растворяются для получения конечного продукта в соответствии с требованиями потребителя. Выше описанный метод регулярно исплользуется с1987 г. в Окриджской Национальной Лаборатории. Обычно получают от 5 до15 Ки 90Y в 10 мл. 0,1 М НСl. Примесь 90Sr в конечном продукте не превышает 0,015 %, а общее количество примесей тяжелых металлов меньше чем 20 ppm.
- 519.
Способы получения радионуклидов для ядерной медицины
-
- 520.
Способы разделения смесей
Другое Химия
- 520.
Способы разделения смесей