Информация по предмету Химия

  • 301. Нефтехимия и безотходная технология
    Другое Химия

    Разработана комплексная схема переработки смолы пиролиза этиленового производства. Схема включает процессы термополиконденсации, фракционирования дистиллята, приготовления сажевого сырья с высоким значением индекса корреляции и синтеза суперпластификатора - эффективной добавки к бетонным смесям. На стадии термополиконденсации целевым продуктом является высококачественный нефтяной пиролизный пек, обладающий низким содержанием серы и мезогенными свойствами.
    Из 1т. смолы пиролиза и реагентов, требуемых на стадии синтеза суперпластификатора (серной кислоты, формалина, едкого натра), может быть получено 370 кг нефтяного пека, 276 кг сырья для сажи, 1130 кг суперпластификатора (в виде водного раствора с концентрацией 36%) и 32 кг ароматической углеводородной фракции 70-180°С . Таким образом, по применяемой технологии практически вся смола пиролиза превращается в ценные товарные продукты. Углеводородные газы, получаемые на стадии термополиконденсации (выход 2-3%), могут быть утилизированы путем дожига в трубчатой печи. Сточная вода процесса термополиконденсации используется при синтезе суперпластификатора. Для основных продуктов процесса выполнены токсикологические испытания и технологические испытания в производстве бетона, искусственного графита и технического углерода (сажи).

  • 302. Нефть
    Другое Химия

    Вопросы об исходном веществе, из которого образовалась нефть, о процессах нефтеобразования и формирования нефти в концентрированную залежь, а отдельных залежей в месторождения до сего времени ещё не являются окончательно решёнными. Существует ряд мнений как об исходных для нефти веществах, так и о причинах и процессах, обусловливающих её образование. В последние годы благодаря трудам главным образом советских геологов, химиков, биологов, физиков и исследователей других специальностей удалось выяснить основные закономерности в процессах нефтеобразования. В настоящее время установили, что нефть органического происхождения, т.е. она, как и уголь, возникла в результате преобразования органических веществ.

  • 303. Нефть - кровь промышленности
    Другое Химия

    Нефть дар природы. Нефть неотъемлемый элемент нашей повседневной жизни. Нефть дала миру неисчислимые богатства. Нефть королева энергетики. Нефть черное золото. Чем ее можно заменить? «Голубым золотом» - природным газом? Вряд ли надолго! Углем? Скорее всего. И скорее бы закончился очередной «дележ мира», очередная «нефтяная война». Ибо кто владеет нефтью энергоносителем, тот владеет миром.

  • 304. Нефть - чёрное золото планеты
    Другое Химия

    Органическая теория. Основы этой теории были положены М.В.Ломоносовым в середине XVIII века. В одном из своих трактатов он писал: Выгоняется подземным жаром из приготовляющихся каменных углей она бурая и черная масляная материя ... и сие есть рождение жидких разного сорта горючих и сухих затверделых материй, каковы суть каменное масло, жидовская смола, нефть, гагат, и сим подобное, которые хотя чистотой разнятся, однако из одного начала происходят". Позднее эта теория менялась и варьировалась, но суть теории такова органический материал, преобразованный сначала в уголь, а потом в нефть. Правда, другие гипотезы того времени носили курьезный характер. Один варшавский каноник утверждал, что Земля в райский период была настолько плодородна, что на большую глубину содержала жировые примеси. После грехопадения этот жир частично испарился, а частично погрузился в землю, смешиваясь с разными веществами. Всемирный потоп содействовал превращению его в нефть. Известны и другие не менее "научные" гипотезы о происхождении нефти. Авторитетный немецкий геолог-нефтяник Г.Гефер рассказывает об одном американском нефтепромышленнике конца прошлого века, считавшем, что нефть возникла из мочи китов на дне полярных морей. По подземным каналам она проникла в Пенсильванию. Гениальная догадка М. В. Ломоносова об образовании нефти в результате воздействия повышенной температуры на биогенное органическое вещество осадочных пород начала получать подтверждение в конце XIX- начале XX веков при проведении экспериментальных химических и геологических исследований.

  • 305. Нефть и нефтепродукты
    Другое Химия

    ПоказательТ-1ТС-1Т-2РТТ-6Плотность при 20 °С, кг/м3, не менее800775755775840Фракционный состав, температура, °С:начало кипения, не выше150150---начало кипения, не ниже--6013519510 %, не выше17516514517522050 %. не выше22519519522525590 %, не выше27023025027029098 %, не выше280250280280315Вязкость кинематическая, м2/c:при 20 °С, не менее1,51,251,051,254,5при -40 °С, не более16861660Теплота сгорания низшая, не менеекДж/кг4290042900431004310042900ккал/кг1025010250103001030010250Высота некоптящего пламени, мм, не менее1625252520Кислотность, мг КОН/100 мл, не более0,70,70,70,70,5Температура начала кристаллизации, °С, не выше-60-60-60 (-55)-60-60Иодное число, г I2/100 мл, не более23,53,50,51Содержание:аренов, %, не более20222218,510фактических смол, мг/100 мл, не более65546меркаптановой серы, %, не более-0,0050,0050,0010сероводорода, %, не болееО т с у т с т в и еИспытание на медной пластинкеВ ы д е р ж и в а е тСодержание водорастворимых кислот, щелочей, механических примесей и водыО т с у т с т в и еЗольность, %, не более0,0030,0030,0030,0030,003Содержание мыл нафтеновых кислотО т с у т с т в и еСодержание нафталиновых углеводородов, %, не более2,51,5111Термическая стабильность в статических условиях при 150 °С, мг/100 мл, не более:в течение 4 ч181010--в течение 5 ч---66Термическая стабильность в динамических условиях при 150-180 °С: перепад давления на фильтреза 5 ч, МПа, не более0,0830,083-0,010,01отложения на подогревателе, баллы, не более22-20Люминометрическое число, не менее5055555545Температура вспышкив закрытом тигле, °С, не менее3028-2860

  • 306. Нефть и продукты её переработки
    Другое Химия

    Важным является свойство нефти растворять углеводородные газы. В 1 м3 нефти может раствориться до 400 м3 горючих газов. Большое значение имеет выяснение условий растворения нефти и природных газов в воде. Нефтяные углеводороды растворяются в воде крайне незначительно. Нефти различаются по плотности. Плотность нефти, измеренной при 20°С, отнесенной к плотности воды, измеренной при 4°С, называется относительной. Нефти с относительной плотностью 0,85 называются легкими, с относительной плотностью от 0,85 до 0,90 средними, а с относительной плотностью свыше 0,90 тяжелыми. В тяжелых нефтях содержатся в основном циклические углеводороды. Цвет нефти зависит от ее плотности: светлые нефти обладают меньшей плотностью, чем темные. А чем больше в нефти смол и асфальтенов, тем выше ее плотность. При добыче нефти важно знать ее вязкость. Различают динамическую и кинематическую вязкость. Динамической вязкостью называется внутреннее сопротивление отдельных частиц жидкости движению общего потока. У легких нефтей вязкость меньше, чем у тяжелых. При добыче и дальнейшей транспортировке тяжелые нефти подогревают. Кинематической вязкостью называется отношение динамической вязкости к плотности среды. Большое значение имеет знание поверхностного натяжения нефти. При соприкосновении нефти и воды между ними возникает поверхность типа упругой мембраны. Капиллярные явления используются при добыче нефти. Силы взаимодействия воды с горной породой больше, чем у нефти. Поэтому вода способна вытеснить нефть из мелких трещин в более крупные. Для увеличения нефтеотдачи пластов используются специальные поверхностно-активные вещества (ПАВ). Нефти имеют неодинаковые оптические свойства. Под действием ультрафиолетовых лучей нефть способна светиться. При этом легкие нефти светятся голубым светом, тяжелые бурым и желто-бурым. Это используется при поиске нефти. Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов.

  • 307. Нефть и способы ее переработки
    Другое Химия

    Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Вначале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению. Основные фракции нефти следующие:

    1. Фракция, собираемая от 400 до 2000 С, - газолиновая фракция бензинов содержит углеводороды от С5Н12 до С11Н24. При дальнейшей перегонке выделенной фракции получают: газолин (от 400 до 700 С), бензин (от 700 до 1200 С) авиационный, автомобильный и т.д.
    2. Лигроиновая фракция, собираемая в пределах от 1500 до 2500 С, содержит углеводороды от С8Н18 до С14Н30. Лигроин применяется как горючее для тракторов.
    3. Керосиновая фракция включает углеводороды от С12Н26 до С18Н38 с температурой кипения от 1800 до 3000С. керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.
    4. Газойль (выше 2750 С) дизельное топливо.
    5. Мазут остаток от перегонки. Содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции:
    6. Соляровые масла дизельное топливо,
    7. Смазочные масла (авиатракторные, авиационные, индустриальные и др.),
    8. Вазелин (основа для косметических средств и лекарств).
  • 308. Нефть, ее свойства
    Другое Химия

    Важным является свойство нефтей растворять углеводородные газы. В 1 м3 нефти может раствориться до 400 м3 горючих газов. Большое значение имеет выяснение условий растворения нефти и природных газов в воде. Нефтяные углеводороды растворяются в воде крайне незначительно. Нефти различаются по плотности. Плотность нефти, измеренной при 20°С, отнесенной к плотности воды, измеренной при 4°С, называется относительной. Нефти с относительной плотностью 0,85 называются легкими, с относительной плотностью от 0,85 до 0,90 средними, а с относительной плотностью свыше 0,90 тяжелыми. В тяжелых нефтях содержатся в основном циклические углеводороды. Цвет нефти зависит от ее плотности: светлые нефти обладают меньшей плотностью, чем темные. А чем больше в нефти смол и асфальтенов, тем выше ее плотность. При добыче нефти важно знать ее вязкость. Различают динамическую и кинематическую вязкость. Динамической вязкостью называется внутреннее сопротивление отдельных частиц жидкости движению общего потока. У легких нефтей вязкость меньше, чем у тяжелых. При добыче и дальнейшей транспортировке тяжелые нефти подогревают. Кинематической вязкостью называется отношение динамической вязкости к плотности среды. Большое значение имеет знание поверхностного натяжения нефти. При соприкосновении нефти и воды между ними возникает поверхность типа упругой мембраны. Капиллярные явления используются при добыче нефти. Силы взаимодействия воды с горной породой больше, чем у нефти. Поэтому вода способна вытеснить нефть из мелких трещин в более крупные. Для увеличения нефтеотдачи пластов используются специальные поверхностно-активные вещества (ПАВ). Нефти имеют неодинаковые оптические свойства. Под действием ультрафиолетовых лучей нефть способна светиться. При этом легкие нефти светятся голубым светом, тяжелые бурым и желто-бурым. Это используется при поиске нефти. Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов.

  • 309. Нефтяные дисперсные системы. Классификация НДС
    Другое Химия

    Участок диаграммы 5-.fi'"-это также образование свободно-дисперсной системы (золя), но уже необратимого типа, где ССЕ представлены твердыми частичками уплотнения, полученными в результате химических реакций. Здесь асфальтены, образуя крупные ассоциаты, насыщают раствор и выпадают в осадок -образуют отдельную фазу (карбены). В конце участка (вблизи точки В') карбены переходят в карбоиды и образуется типично коллоидная система, переходящая далее (.участок В- Г) в геле-образное, т.е. в связнодисперсное состояние. При очень высоких (500 - 550 °С) температурах эта система переходит в сплошную твердую фазу (точка Г), так называемую твердую пену (кокс). Таким образом, знание и учет коллоидно-дисперсных свойств нефтепродуктов и особенно межфазных переходов является очень важным для выбора оптимальных параметров технологии переработки нефти.

  • 310. Новые материалы на основе полимерных нанокомпозитов
    Другое Химия

    Если говорить о полимерных композиционных материалах, то здесь следует начать с определения понятия „композиционный материал“. По определению, композиционными называют материалы, состоящие из двух или более фаз с четкой межфазной границей системы, которые содержат усиливающие (армирующие) элементы (волокна, пластины, частицы) с различным отношением длины к сечению (что и создает усиливающий эффект), погруженные в полимерную матрицу. Механические свойства композиционного материала в большой степени зависят от межфазного взаимодействия между полимерной матрицей и армирующими элементами, то есть от величины адгезии. Естественно, чем выше адгезия полимерной матрицы к армирующим элементам, тем прочность композита будет выше. Если же говорить о нанокомпозиционных полимерных материалах, то использовать определение „армирующий наполнитель“ применительно к наночастицам не совсем верно. В нанокомпозитах наночастицы взаимодействуют с полимерной матрицей не на макро (как в случае с композиционными материалами), а на молекулярном уровне. В следствие такого взаимодействия образуется композиционный материал, обладающий высокой адгезионной прочностью полимерной матрицы к наночастицам. Следует отметить, что нанокомпозиция имеет упорядоченную внутреннюю структуру.

  • 311. О структурной "памяти" аморфного полистирола
    Другое Химия

     

    1. Folland R., Charlesby A. Europ. Polymer J., 1979, v. 15, № 9, p. 953.
    2. Андрианова Г.П., Красникова Н.П. Высокомолек. соед. Б, 1972, т. 14, № 1, с. 4.
    3. Андрианова Г.П., Нарожная Е.Л. Высокомолек. соед. Б, 1977, т. 19, № 5, с. 379.
    4. Привалко В.П., Андрианова Г.П., Бесклубенко Ю.Д., Нарожная Е. Л., Липатов Ю. С. Высокомолек. соед. А, 1978, т. 20, № 12, с. 2777.
    5. Липатов Ю.С, Нестеров А.Е., Гриценко Т.М., Веселовский Р. А. Справочник по химии полимеров. Киев: Наук, думка, 1971. 530 с.
    6. Аскадский А.А., Колмакова Л.К., Тагер А.А., Слонимский Г.Л., Коршак В. В. Высокомолек. соед. А, 1977, т. 19, № 5, с. 1004.
    7. Bianchi U., Cuniberti С, Pedemonte Е., Rossi С. J. Polymer Sci. A-2, 1969, v. 7, № 4, p. 855.
    8. Привалко В.П., Ярема Г.Е., Бесклубенко Ю. Титов Г.В. В кн.: Физические методы исследования полимеров. Киев: Наук, думка, 1981, с. 107.
    9. Hellwege К.Н., Knappe W., Lehmann P. Kolloid-Z., 1962, В. 183, № 1, S. НО.
    10. Привалко В., Ярема Г.Е., Бесклубенко Ю.Д., Титов Г.В. Композиционные полимерные материалы, 1982, № 13, с. 6.
    11. Barker Я.Е., Jr., Chen R.Y.S., Frost R.S.J. Polymer Phys. Ed., 1977, v. 15, № 6, p. 1199.
    12. Berry G.C, Fox T.G. Advances Polymer Sci., 1968, v. 5, № 1, p. 261.
    13. Bolt Be M.A. Be, Easteal A.J., Macedo P.В., Moynihan С.T.J. Amer. Ceram. Soc, 1976, v. 59, № 1/2, p. 16.
    14. Липатов Ю.С, Демченко С.С, Привалко В.П. Докл. АН ССОР, 1983, т. 273, № 1.. с. 128.
    15. Hoffmann Ж. Makromolek. Chem., 1973, В. 174, S. 167.
    16. Aharoni S.М.J. Macromolec. Sci. В, 1978, v. 15, № 3, p. 347.
  • 312. Обескремнивание вод
    Другое Химия

    При фильтрационном методе обескремнивания воды фильтры загружаются магнезиальными сорбентами (полуобожженным доломитом, а также специальным сорбентом, получаемым обработкой измельченного каустического магнезита соляной кислотой), активированным оксидом алюминия, бокситами. Технология получения магнезиального сорбента следующая: смесь каустического магнезита с соляной кислотой или хлоридом магния, имеющую консистенцию теста, высушивают при температуре 80...100°С, измельчают и просеивают. Полученный магнезиальный сорбент представляет собой зерна светло-серого цвета крупностью 0,5... 1,5 мм. Массовое отношение Mg/Cl в сорбенте примерно составляет 1,5 : 1, а его насыпная масса 0,75 ... 0,85 т/м3. Сущность обескремнивания воды фильтрованием через такой сорбент заключается в образовании мало растворимого в воде силиката магния.

  • 313. Обзор источников образования тяжелых металлов
    Другое Химия

     

    1. Вторичные материальные ресурсы цветной металлургии. Справочник. Экономика, М., 1984.
    2. Мазаник В.Н. и др. Получение сухих цинковых белил при перерабоке вторичного медно-цинкового сырья. Цветные металлы, 1977, №5.
    3. Гудкевич В.М. и др. Способы переработки лома свинцовых аккумуляторов. М.: Цветметинформация, 1970.
    4. Колодин С.М. Вторичное олово и переработка бедного оловянного сырья. М.: Металлургия, 1970.
    5. Основы металлургии. Т. 5. Малые благородные и радиоактивные металлы. Трансурановые элементы. М.: Металлургия, 1979.
    6. Химия и технология соединений хрома. Тр. УНИХИМ, Свердловск, 1985, вып.60.
    7. Химическая энциклопедия. Т.5.
    8. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Том 3. Неорганические и элементорганические соединения. Под. ред. проф. Н.В. Лазарева. Л. «Химия», 1977.
    9. Химическая энциклопедия. Т.2.
    10. Вторичные материальные ресурсы нефтеперерабатывающей и нефтехимической промышленности. Справочник. Экономика, М., 1984.
    11. Вторичные материальные ресурсы номенклатуры Госснаба СССР. Справочник. Экономика, М., 1987
    12. Химия и технология молибдена и вольфрама.Сб тезисов.,1980.
    13. Химия и технология производства молибдена.Сб. статей.,1966.
    14. Химия и технология соединений марганца.Сб статей.,1975.
    15. Химия и технология соединений хрома.Сб статей.,1978.
    16. Химия и технология соединений хрома.Сб статей.,1981.
    17. Роде Т.В. Кислородные соединения хрома и хромовые катализаторы. М., Изд-во Акад. наук СССР, 1962.
    18. Химия и технология хромовых соединений. Сб статей.,1966.
    19. Роде Е.Я. Кислородные соединения марганца. Исходные соединения, минералы и руды. М., 1952.
    20. Пеньков В.В., Центер Б.И. Основы теории и эксплуатации герметичных никель-кадмиевых аккумуляторов, 1985.
    21. Грачев К.Л. Щелочные аккумуляторы, 1951
    22. Железо-никелевые аккумуляторы. Информационный сборник. М.,1953.
    23. Аккумуляторы. Сб. статей., 1961.
    24. Сидоренко Г.И., Ицкова А.И. Никель: гигиенические аспекты окружающей среды. М.: Медицина, 1980.
    25. Левина Э.Н. Общая токсикология металлов. Л., Медицина, Ленинградское отделение, 1972.
    26. Брахнова И.Т. Токсичность порошков металлов и их соединений. Киев «Наукова думка», 1971.
    27. Окислы марганца (Сравнит. их токсичность, гигиеническое значение и клиника хронического воздействия), 1962.
    28. Перельман Ф.М. Кобальт и никель. М.: Наука, 1975.
    29. Береговский В.И. Никель и его значение для народного хозяйства. М., Металлургия, 1964.
    30. Смирнов В. И., Цейдлер А.А., Худяков И.Ф., Тихонов А.И. Металлургия меди, кобальта и никеля. Часть 2. М.: Металлургия, 1966.
    31. Беспамятнов Г.П., Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде. Справочник. Л.: Химия, 1985.
    32. Предельно допустимые концентрации вредных веществ в воздухе и воде. Справочное пособие для выбора и гигиенической оценки методов обезвреживания промышленных отходов. Л.: Химия, 1975.
  • 314. Обмен белков в организме животного
    Другое Химия

    У жвачных животных расщепление белков происходит в рубце под действием ферментов, вырабатываемых микрофлорой. При этом белки расщепляются до аминокислот, часть аминокислот дезаминируется с образованием аммиака и короткоцепочных карбоновых кислот. Азот аммиака, карбоновые кислоты используются микробными клетками, клетками простейших (поглощаются микроорганизмами) для синтеза собственных аминокислот, их тоже около 20. Затем из этих аминокислот синтезируются белки микробных тел. У жвачных для этих целей могут использоваться азотсодержащие вещества небелковой природы мочевина, карбамидфосфат и другие. Синтезируемый микробиальный белок является полноценным, то есть содержит весь набор незаменимых аминокислот. Этим путем у жвачных животных покрывается 30% потребности в белке. Чтобы более полно использовался процесс микробиального синтеза белка, надо в рацион включать не только азотсодержащие вещества, но и легкорастворимые углеводы с тем, чтобы обеспечить развивающуюся микрофлору энергией. Обычно в рационе соотношение сахаропереваримого протеина 1,2:1. Всего азота небелковых веществ не должно превышать 20-30% ко всему протеину рациона. У лошадей этот процесс протекает в слепой кишке.

  • 315. Обмен углеводов в организме животного
    Другое Химия

    Под действием одних молекул крахмал может распадаться до молекул мальтозы и глюкозы. Но поскольку пища в ротовой полости находится непродолжительное время, то гидролиз крахмала под действием амилазы слюны незначительный. И кроме того, в отличие от человека у животных эти ферменты малоактивны, у свиней в 100 раз, а у крс в 1000 раз активность их ниже чему человека. У крс слюна выполняет в основном роль увлажнителя корма, происходит образование кома. Ферменты амилаза и мальтаза действуют почти в нейтральной среде рН = 6,8 7,0, активируют с NaCL. Поэтому когда пищевой ком из ротовой полости поступает в желудок, то там расщепление крахмала продолжается под действием амилазы слюны до тех пор, пока позволяет рН, затем начинается протеолиз. Таким образом, переваривание в желудке идет короткое время.

  • 316. Обработка каучука и производство резины
    Другое Химия

    Полиуретан. Класс эластомеров, известных как полиуретаны, находит применение в производстве пеноматериалов, клеев, покрытий и формованных изделий. Изготовление полиуретанов включает несколько стадий. Сначала получают сложный полиэфир реакцией дикарбоновой кислоты, например адипиновой, с многоатомным спиртом, в частности этиленгликолем или диэтиленгликолем. Полиэфир обрабатывают диизоцианатом, например толуилен-2,4-диизоцианатом или метилендифенилендиизоцианатом. Продукт этой реакции обрабатывают водой и подходящим катализатором, в частности n-этилморфолином, и получают упругий или гибкий пенополиуретан. Добавляя диизоцианат, получают формованные изделия, в том числе шины. Меняя соотношение гликоля и дикарбоновой кислоты в процессе производства сложного полиэфира, можно изготовить полиуретаны, которые используются как клеи или перерабатываются в твердые или гибкие пеноматериалы либо формованные изделия. Пенополиуретаны огнестойки, имеют высокую прочность на растяжение, очень высокое сопротивление раздиру и истиранию. Они проявляют исключительно высокую несущую способность и хорошее сопротивление старению. Вулканизованные полиуретановые каучуки имеют высокие прочность на растяжение, сопротивление истиранию, раздиру и старению. Был разработан процесс получения полиуретанового каучука на основе простого полиэфира. Такой каучук хорошо ведет себя при низких температурах и устойчив к старению.

  • 317. Общая характеристика химических элементов
    Другое Химия

    Всю таблицу Менделеева можно разделить на металлы, неметаллы и амфотерные вещества. Металлы - простые вещества, характеризующиеся способностью отдавать электроны, расположенные на внешнем энергетическом уровне (валентные электроны) и переходить в положительно заряженные ионы. Практически все металлы обладают высокой электро- и теплопроводностью, способностью хорошо отражать световые волны (чем и обуславливается их блеск и непрозрачность), пластичностью. В твёрдом состоянии обычно имеют кристаллическое строение. Связь между атомами в металле осуществляется валентными электронами, которые свободно перемещаются в кристаллической решётке, образуемой положительно заряженными ионами металла. Из 107 элементов периодической системы, 83 элемента являются металлами. Многие эксплуатационные свойства металлов зависят не только от их химических свойств, но и от структуры, которую они приобретают в результате способов получения и последующей обработки. Это создаёт возможности широкого изменения свойств металлов и делает их важнейшими конструкционными, электротехническими, механическими и другими материалами. На сегодняшний день, металлы находят широкое применение в различных областях техники. Неметаллы - простые вещества, не обладающие ковкостью, металлическим блеском, являются плохими проводниками тепла и электричества. Для атомов неметаллов преимущественно характерна способность присоединять электроны, т.е. превращаться в отрицательно заряженные ионы. К неметаллам относятся 22 элемента: H, B, C, Si, N, P, As, O, S, Se, Te, галогены и благородные газы. Оксиды неметаллов носят кислотный характер, им соответствуют кислородсодержащие кислоты. Амфотерные вещества - вещества, которым свойственно проявлять как кислотные, так и основные свойства. Амфотерное вещество, реагируя, например, с сильным основанием, может проявить кислотные свойства, в то же время, это же вещество, реагируя с сильной кислотой, может проявить основные свойства. См №2, с273, с279, с225.

  • 318. Ознакомительная практика
    Другое Химия

    Большая мощность и последовательная структура агрегата задают повышенные требования к надёжности контроля, регулирования и защиты, так как выход из строя отдельного элемента зачастую приводит к полной остановке агрегата и, как следствие, к большим экономическим потерям. Территориальная разобщенность рабочих мест при большом числе взаимосвязанных узлов регулирования затрудняет координацию действий аппаратчиков. Поэтому требуется единая техническая система с учётом всех взаимосвязей и взаимного влияния отдельных устройств друг на друга. Результатом этого являются отказ от традиционных помещений щитовых на отдельных стадиях процесса, концентрация управления в руках одного человека. Сосредоточение всей информации и управления агрегатом в руках одного оператора требует организации рационального её представления. Для этого все органы управления регуляторами и исполнительными механизмами размещены на пульте; здесь же выполнена мнемосхема производства с вмонтированными в неё кнопками вызова параметров и сигнальными лампами. Для снижения психологической нагрузки на оператора, вызванной информационной насыщенностью, пульт снабжён системой сигнализации отклонений параметров от нормы и системой группового вызова. Это позволяет оператору при отсутствии сигналов выборочно проверять состояние различных параметров, а при наличии сигнала одним нажатием кнопки вызвать на контроль всю группу параметров, связанных с нарушенным параметром. При необходимости дополнительную информацию оператор получает с записывающих приборов.

  • 319. Озон
    Другое Химия
  • 320. Окисление парафиновых углеводородов
    Другое Химия

    Было показано [4], что под действием кислорода эполеты металлов разлагаются, образуя две молекулы кислоты. Для практического использования катализатора большое значение имеет вопрос о стабильности жирных кислот в условиях технологического режима окисления. Тем не менее роль катализатора в процессе окисления высокомолекулярных жирных кислот выяснена недостаточно. Была изучена окисляемость фракций синтетических жирных кислот Сю -Ci3 и Си - С20. при переменном температурном режиме и в присутствии 0,2% КМпОд кислоты Сю - Сю окисляются незначительно, а кислоты Сю - Сго с большими скоростями. Кислотное число водорастворимых кислот по мере протекания каталитического окисления непрерывно повышается. Это свидетельствует о том, что кислоты обогащаются низкомолекулярными веществами. Наиболее эффективно процесс окисления ускоряется некоторой оптимальной концентрацией Мn, ровной -0,1%. Избыток КМnО4 по сравнению с оптимальной концентрацией или увеличение доли щелочного металла в составе катализатора приводят к разному уменьшению скорости процесса, в то время как один марганец влияет на скорость окисления гораздо слабее, чем в смеси с калием. Таким образом, основные ингибирующие функции в данном случае принадлежат, по-видимому, соединением щелочного металла [3].