Информация по предмету Химия

  • 221. Коррозионное растрескивание металлов
    Другое Химия

    Быстрое начало и прекращение отдельных процессов прерывистого трещинообразования производит на металл сильное механическое воздействие, что может вызвать дальнейшее развитие и разветвление трещины. Развитие трещины приостановится, когда она достигнет области, где нет достаточных растягивающих напряжений, направление которых перпендикулярно направлению развития трещины. Следовательно, для последующего развития трещины необходима дальнейшая деформация. Большие трещины обладают способностью развиваться быстрее, чем мелкие. По мере роста мелких трещин крупные трещины развиваются значительно быстрее, и вскоре начинает преобладать только одна трещина, которая останавливает развитие других. Характер развития трещин в пластичных металлах обеспечивает возникновение ряда быстро развивающихся трещин, так как новые трещины образуются по ходу .продвижения основной трещины и соединяются с ней. Когда энергия деформации, выделяющаяся при развитии основной трещины, становится равной работе деформации, происходит процесс быстрого саморастрескивания. В эту главу не входит подробное обсуждение работ Ирвина и Орована об относительном равновесии между совершённой работой и энергией, освобождающейся при развитии трещины. Следует указать, что если энергия деформации, выделяющаяся при развитии трещины, больше энергии, необходимой для нового разрушения поверхности, трещина будет развиваться самопроизвольно. Ирвин также показал, что скорость развития трещины будет увеличиваться до тех пор, пока не будет достигнуто неустойчивое состояние, после чего произойдет быстрое разрушение.

  • 222. Коррозия
    Другое Химия

    Причину коррозии металлов в растворах, не содержащих одноименных ионов, объясняет теория необратимых потенциалов. Эта теория рассматривает поверхность металлов как однородную, гомогенную. Основной и единственной причиной растворения (коррозии) таких металлов является термодинамическая возможность протекания анодного и катодного актов. Скорость растворения (коррозии) будет определяться кинетическими факторами. Но гомогенную поверхность металлов можно рассматривать как предельный случай, который может быть реализован, например, в жидких металлах. (ртуть и амальгамы металлов). Для твердых металлов такое допущение будет ошибочным, хотя бы потому что различные атомы сплава (и чистого металла) занимают различное положение в кристаллической решетке. Наиболее сильное отклонение от гомогенной конструкции будет наблюдаться при наличии в металле инородных включений, интерметаллидов, границ зерен и т.д. В этом случае, разумеется, поверхность является гетерогенной. Установлено, что даже при наличии на поверхности металла неоднородностей в целом поверхность остается эквипотенциальной.

  • 223. Коррозия и защита металлов
    Другое Химия

    Рассмотрим коррозионное разрушение закладных металлических конструкций (трубы, детали фундаментов, кабели) под действием утечки тока, например, с трамвайного рельсового пути, который заглублен в грунт и может иметь высокое электрическое сопротивление за счет плохо проводящих электрический ток стыков рельс. В этом случае при хорошо проводящей влажной почве возможно разветвление тока, причем часть его пойдет через почву кратчайшим путем. На рис. 4 показана схема ответвления тока с трамвайного рельса, который является обычно отрицательным полюсом (+ на проводе). На пути так называемого «блуждающего» тока может находиться металлическое сооружение плохо изолированная труба. Примем условно, что электролит, пропитывающий почву, содержит ионыCl-, Fe3+ и Na+. Электроны, выходящие из металла (рельса), по электролиту перемещаться не могут и в месте выхода их из рельса разряжаются ионы Н+ или Fe3+ (что может привести даже к наращиванию рельса выделившимся железом). Ионы хлора будут перемещаться по почве, подходить к трубе и, разряжаясь, переводить металл в раствор; на выходе электронов из металла (трубы) также не будет коррозии, тогда как на входе в рельс ионы хлора будут вызывать коррозию. Аналогичные явления могут наблюдаться и при переменном токе, но они менее опасны.

  • 224. Коррозия меди в 5М изопропанольных растворах НС1
    Другое Химия

    Имеются данные о влиянии pH среды на депассивацию меди [] в хлоридсодержащих боратных буферных растворах. Установлено, что всем исследованном интервале рН при анодной поляризации медь переходит в пассивное состояние. При увеличении рН боратного буфера стационарный потенциал, потенциал пассивации и плотность тока пассивации уменьшается, т.к. изменяется структура, толщина и состав оксидной пленки на меди. В среде, близкой к нейтральной пассивирующая пленка состоит из оксидов Cu (I) и Cu (II), а в щелочной среде - в основном из оксида меди (I) и очень тонкой пленки оксида меди (II). В последнем случае толщина пленки меньше, а пористость больше. При увеличении рН в хлоридсодержащих боратных буферах потенциал питтиногообразования снижается (разблагораживается), что связано как с изменением происходящими в оксидной пленке, так и с тем, что начальные стадии депассивации меди протекают через образование смешанных гидроксокомплексов. При постоянном значении рН потенциал питтингообразования не зависит от концентрации NaC1. Предложена схема механизма начальных стадий инициирования питтингообразования меди в хлоридсодержащих боратных растворах, согласно которой лимитирующей стадией является диссоциация гидроксида Cu(ОН)2, а нуклеофильное замещение пассивирующего лиганда в поверхностном комплексе анионом-активатором протекает по диссоциативному механизму.

  • 225. Коррозия металла
    Другое Химия

    Коррозия стали и цветных металлов принципиально отличается от коррозионных процессов в неметаллических строительных материалах. Большинство так называемых драгоценных металлов, особенно сталь, в большей степени подвержены коррозии, чем неметаллические материалы. Средняя скорость коррозии основных металлов в условиях средне европейского климата представлена в табл. 2.1 Из таблицы видно, что наибольшие потери наблюдаются для обычных сталей. Приведённые данные являются усредненными. Загрязнение, воздуха, особенно вблизи химических заводов, приводит к значительному ускорению процессов коррозии. В результате коррозии происходят необратимые изменения - уменьшение площади сечения и снижение прочности, а также часто изменение внешнего вида поверхности металла.

  • 226. Коррозия металлов
    Другое Химия

    Причину коррозии металлов в растворах, не содержащих одноименных ионов, объясняет теория необратимых потенциалов. Эта теория рассматривает поверхность металлов как однородную, гомогенную. Основной и единственной причиной растворения (коррозии) таких металлов является термодинамическая возможность протекания анодного и катодного актов. Скорость растворения (коррозии) будет определяться кинетическими факторами. Но гомогенную поверхность металлов можно рассматривать как предельный случай, который может быть реализован, например, в жидких металлах. (ртуть и амальгамы металлов). Для твердых металлов такое допущение будет ошибочным, хотя бы потому что различные атомы сплава (и чистого металла) занимают различное положение в кристаллической решетке. Наиболее сильное отклонение от гомогенной конструкции будет наблюдаться при наличии в металле инородных включений, интерметаллидов, границ зерен и т.д. В этом случае, разумеется, поверхность является гетерогенной. Установлено, что даже при наличии на поверхности металла неоднородностей в целом поверхность остается эквипотенциальной.

  • 227. Коррозия металлов - проблема химии?
    Другое Химия

    Необходимость осуществления мероприятий по защите от коррозии диктуется тем обстоятельством, что потери от коррозии приносят чрезвычайно большой ущерб. По имеющимся данным, около 10% ежегодной добычи металла расходуется на покрытие безвозвратных потерь вследствие коррозии и последующего распыления. Основной ущерб от коррозии металла связан не только с потерей больших количеств металла, но и с порчей или выходом из строя самих металлических конструкций, так как вследствие коррозии они теряют необходимую прочность, пластичность, герметичность, тепло- и электропроводность, отражательную способность и другие необходимые качества. К потерям, которые терпит народное хозяйство от коррозии, должны быть отнесены также громадные затраты на всякого рода защитные антикоррозионные мероприятия, ущерб от ухудшения качества выпускаемой продукции, выход из строя оборудования, аварий в производстве и так далее.

  • 228. Коррозия неметаллов
    Другое Химия

    По химическому составу материала в основном можно судить о вероятном поведении его в различных агрессивных средах. К кислотостойким материалам следует отнести те, в которых преобладают нерастворимые или труднорастворимые кислотные окислы - кремнезем, низкоосновные силикаты и алюмосиликаты. Так, например, сложные алюмосиликаты обладают повышенной кислотостойкостью вследствие высокого содержания в них кремнезема, нерастворимого во всех кислотах, за исключением плавиковой. В то же время гидратированные алюмосиликаты типа каолина не обладают кислотостойкостью, так как кислотные окислы входят в них в виде гидратов. Чем выше содержание кремнезема в материалах неорганического происхождения, как в природных, так и в искусственных, тем выше их кислотостойкость. Так, например, почти абсолютной кислотостойкостью обладают кварциты, изделия из плавленого кварца, содержащие почти 100% SiO2 . Материалы, содержащие основные окислы, не являются кислотостойкими и разрушаются при действии минеральных кислот, но обладают стойкостью в щелочах, как, например, известняки или магнезиты и обычные строительные цементы. 4

  • 229. Красители
    Другое Химия

    В течение многих веков для крашения тканей, изготовления косметических препаратов, а позднее и художественных красок применяли красители природные - ализарин, индиго, кармин и др. (всего около 30). В 1771г. действием НNO3 на индиго получен первый синтетический краситель - пикриновая кислота; в 1843г ее получили из более доступного сырья - фенола, что позволило в 1849г. начать производство кислоты для крашения шелка.Возникновение промышленности синтетических красителей стало возможным лишь после открытия Н.Н.Зининым (1842г.) универсального метода получения анилина и др. ароматических аминов.В 1855г. Я.Натансон получил из анилина красный синтетический краситель, вторично открытый в 1859г. Э.Вергеном и названный фуксином (цвет фуксии).В 1856г. У.Перкин-старший синтезировал розовато-лиловый мовеин (цвет мальвы).Год 1856 считается датой возникновения промышленности синтетических красителей, названной анилинокрасочной.

  • 230. Крахмал (Доклад)
    Другое Химия

    Он является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, то есть картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала и образуются декстрины, растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, - (C6H10O5)n, но его молекулы более разветвленные. Особенно много гликогена содержится в печени (до 10%). В организме гликоген является резервным веществом, которое превращается в глюкозу по мере ее расходования в клетках.

  • 231. Крашение натурального шелка бромакриламидными красителями
    Другое Химия

     

    1. Г.Е.Кричевский, М.В.Корчагин, А.В.Сенахов. “Химическая технология текстильных материалов”, Москва Легпромбытиздат 1985 г.
    2. Г.Е.Кричевский. “Физико-химические основы применения активных красителей” , Издательство «Легкая индустрия» 1977 г.
    3. Г.Е.Кричевский. “Активные красители” . Издательство «Легкая индустрия», Москва,1968 г.
    4. Ш.В.Пичхадзе, С.М.Сошина “Крашение и печатание тканей из натурального шелка” ЦНИТЭИ Легпром, Москва, 1972 г.
    5. “Базовый лабораторный практикум по химической технологии волокнистых материалов” МГТУ им.А.Н.Косыгина “Международная программа образования”, Москва 2000 г.
    6. Б.Н.Мельников, Г.И.Виноградова “Применение красителей”, Издательство “Химия”, Москва 1986 г.
    7. Б.И.Степанов “Введение в химию и технологию органических красителей” Москва “Химия”, 1984 г.
  • 232. Крекінг нафти
    Другое Химия

    Порівняльні дані по каталітичному та термічному крекінгам чистих вуглеводнів (у інтервалі температур від 400 до 500 °С і тиску близькому до атмосферного)ВуглеводеньКаталітичний крекінгТермічний крекінгн-ПарафіниРозпад в основному до С3- та більших уламків. Утворюються, головним чином, вуглеводні в інтервалі С3- - С6-, що мають багато розгалужених аліфатичних вуглеводнів та невелику кількість нормальних ?-олефінів вище С4-.Розпад в основному до С2- з значною кількістю C1- та С3-. Помітна кількість нормальних олефінів від С4 до Сn-1-. Аліфатичні вуглеводні переважно не розгалужені.ІзопарафіниШвидкість крекінгу порівняно з н-парафінами помітно збільшується за наявності третинних атомів вуглецю.Швидкість крекінгу за наявності третинних атомів вуглецю збільшується не суттєво.Нафтенові вуглеводніКрекінгуються майже з такою ж швидкістю як і парафіни, з тією ж кількістю третинних атомів вуглецю. Утворюються ароматичні вуглеводні в результаті переходу атомів водню до ненасичених вуглеців.Крекінгуються з меншою швидкістю, ніж нормальні парафіни. Утворюються ароматичні вуглеводні в результаті незначного переходу атомів водню до ненасичених вуглеців.Незаміщені ароматичні вуглеводніРеакція проходить в незначному ступені; деяка конденсація до диарилів.Реакція проходить в незначному ступені; деяка конденсація до диарилів.Алкілароматичні вуглеводні (замісники С3- та вище)Алкільна група повністю відщеплюється від кільця у вигляді олефіну. Швидкість крекінгу значно вище, ніж для парафінових вуглеводнів.Алкільна група відщеплюється, залишаючи у кільця один чи два атоми вуглецю. Швидкість крекінгу менше, ніж для парафінових вуглеводнів.н-ОлефіниПродукт крекінгу аналогічний продукту крекінгу н-парафінів, але містить більше олефінів.Продукт крекінгу аналогічний продукту крекінгу н-парафінів, але містить більше олефінів.Всі олефіниПерехід водню важлива реакція, особливо для третинних олефінів. Крекінгуються з значно більшою швидкістю, аніж аналогічні парафіни.Перехід водню незначна реакція; відбувається переважніше для третинних олефінів. Крекінгуються з майже такою ж швидкістю, як аналогічні парафіни.

  • 233. Кремний, полученный с использованием геттерирования расплава
    Другое Химия

    Характер распределения Ti, Zr и Hf в монокристаллах вдоль оси роста аналогичен наблюдавшемуся ранее для щелочноземельных металлов в германии и кремнии, а также для примеси хрома в арсениде галлия. Методами химико-спектрального и активационного анализов, методом радиоактивных индикаторов (для циркония и гафния) показано, что в начальной части формируется концентрационный профиль со снижением концентрации, затем переходная область, за которой следует область нарастания концентрации вплоть до выпадения второй фазы. Распределение примесей-геттеров, а также уровень их концентрации в твердой фазе свидетельствует о том, что их взаимодействие с кислородом происходит в расплаве с последующим распределением атомов металла, связанного и не связанного с кислородом, с различными коэффициентами сегрегации. Более высокая концентрация примеси в начале слитка по сравнению со средней его частью противоречит диаграммам состояния кремний-титан (цирконий, гафний), имеющим эвтектический переход, соответственно которому элементы IV группы должны иметь коэффициент распределения меньше единицы. Отсутствие зависимости характера распределения от условий -перемешивания расплава подтверждает данные о взаимодействии примесей с кислородом. Следствием такого взаимодействия является различное поведение растворенного металла при кристаллизации кремния. Образуя комплексы, соответствующие соединениям с высокой температурой плавления и прочными химическими связями, примесь металла IV-B может иметь коэффициент распределения больше единицы. Коэффициенты распределения титана, циркония и гафния, не связанных с кислородом, меньше единицы, и эти металлы оттесняются в конечную часть слитка. Снижение содержания кислорода в монокристаллах, выращенных методом Чохральского с добавкой геттера, по сравнению с обычными монокристаллами подтверждает факт взаимодействия этих примесей в расплаве. Источником обнаруженного оптически активного кислорода, по-видимому, служит тигель (Si0,).

  • 234. Кремнийорганические полимеры
    Другое Химия

    Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются незаменимыми и до сих пор, например в целлюлозно-бумажной промышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров - материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Развитие химической технологии высокомолекулярных веществ - неотъемлемая и существенная часть современной НТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветвленные, сетчатые и пространственные. Молекулы линейных полимеров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высоко-эластичное, а затем и в вязко-текучее состояния. Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «линейные» обозначает прямолинейные, наоборот, для них более характерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

  • 235. Кристаллогенезис - возникновение, рост и разрушение кристаллов
    Другое Химия

    Материальные частицы (атомы, молекулы, ионы), слагающие газообразные или жидкие (расплавленные) вещества, обладая высокой кинетической энергией, находятся в непрерывном движении. Время от времени они сталкиваются, образуя зародыши микроскопические фрагменты будущей структуры. Чаще всего такие зародыши распадаются, что связано либо с собственными колебаниями, либо с бомбардировкой их свободными частицами. Однако для начала кристаллизации необходимо, чтобы зародыш достиг критической величины, т.е. содержал такое количество частиц, при котором присоединение следующей частицы сделало бы разрастание зародыша энергетически более выгодным, чем его распад. Такая возможность для большинства веществ проявляется либо с понижением температуры, в результате чего уменьшаются температурные колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, то есть к возникновению зародышей.

  • 236. Круговорот второстепенных элементов: цезия и стронция
    Другое Химия

    Цезий входит в группу химических элементов с ограниченными запасами вместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс. тонн (в пересчёте на окись цезия), но они крайне распылены, и, к сожалению, сверхвысокие цены это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом, настоящем и будущем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт. По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: во-первых, его извлечение из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы его руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий.

  • 237. Круговорот золота в природе
    Другое Химия

    Рынок золота живет по своим законам. В октябре 1997 г. началось резкое снижение цены на золото, вызванное экономическим подъемом в развитых странах, которые в основном и определяют мировые цены, с одной стороны, и введением системы золотых займов - с другой. В 1998-1999 гг. цены стабилизировались в опасной близости к себестоимости золота лучших месторождений мира. Себестоимость золота колеблется в диапазоне 199-356 за унцию в зависимости от типа месторождения и в среднем составляет $ 250 за унцию. Одно из условий целесообразности проведения разведки и добычи золота уровень стоимости металла на мировых рынках должен быть не ниже 1300. В настоящее время наблюдается тенденция к повышению себестоимости добычи, так как большая часть разрабатываемых золотых залежей находится на глубине более 3 км с повышенной температурой горной породы (50 °С). Отметим, что себестоимость производства 1 кг чистого золота за последние 12 лет выросла в 2,6 раза. Такой рост издержек и цен производства одним ухудшением горно-геологических условий объяснить трудно.

  • 238. Курсовая работа по органической химии
    Другое Химия

    Высокая липофильность и объемная структура адамантильного радикала при его введении в молекулы различных биологически активных соединений в значительной мере модифицирует их фармакологическое действие. Таким образом была модифицирована структура ряда антимикробных, противоопухолевых, иммунодепрессивных, гормональных, аналгетических, противовоспалительных, нейротропных средств. [133] Так введение адамантила в 1-?-D-арабинофуранозил, цитозин привело к пролонгированию эффекта полученного соединения. При этом молекулярный механизм действия этого вещества не изменяется, так как для проявления им цитостатической активности требуется гидролиз и освобождение от адамантана. Присоединение адамантильного радикала к пуриновому антиметаболиту 6- тиоинозину также усилило иммуносупрессивную активность производного по сравнению с исходным соединением. [4]

  • 239. Курсовая работа по химии. Медь
    Другое Химия

    Пластинку промывают, высушивают и прокаливают при невысокой температуре и выпрямитель готов. Электроны могут проходить только от меди через закись меди. В обратном направлении электроны проходить не могут. Это объясняется тем, что закись меди обладает различной проводимостью. В слое закиси меди, который примыкает непосредственно к меди, имеется избыток электронов, и электрический ток проходит за счет электронов, т.е. существует электронная проводимость. В наружном слое закиси меди наблюдается нехватка электронов, что равноценно появлению положительных зарядов. Поэтому, когда к меди подводят положительный плюс источника тока, а к закиси меди отрицательный, то электроны через систему не проходят. Электроны при таком положении полюсов движутся к положительному электроду, а положительные заряды к отрицательному. Внутри слоя закиси возникает тончайший слой, лишенный носителей электрического тока, - запирающий слой. Когда же медь подключена к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток. Так работает купроксный выпрямитель. [6, с.63]

  • 240. Лабораторная работа по химии 1-3 (NPI)
    Другое Химия

    После этого наливаем в пробирку 4,5 2,5М раствора хлористо-водородной кислоты, 5 капель раствора катализатора. Папиросную бумагу с навеской металла смачивают каплей воды и приклеивают к внутренней стенке пробирки над кислотой. Пробирку с кислотой и металлом плотно присоединяют к прибору; бюретки устанавливаем так, чтобы уровни воды в них были одинаковы.