Информация по предмету Химия

  • 21. Алюминий и его сплавы
    Другое Химия

    Алюминий находится практически везде на земном шаре так как его оксид (Al2O3) составляет основу глинозема. Алюминий в природе встречается в соединениях - его основные минералы:

    • боксит - смесь минералов диаспора, бемита AlOOH, гидраргиллита Al(OH)3 и оксидов других металлов - алюминиевая руда;
    • алунит - (Na,K)2SO4 * Al2(SO4)3 * 4Al(OH)3 ;
    • нефелин - (Na,K)2O * Al2O3 * 2SiO2 ;
    • корунд - Al2O3 - прозрачные кристаллы;
    • полевой шпат (ортоклаз) - K2O * Al2O3 * 6SiO2 ;
    • каолинит - Al2O3 * 2SiO2 * 2H2O - важнейшая составляющая часть глины
  • 22. Амилолитические ферменты и их применение в спиртовой промышленности.
    Другое Химия

    Характеристика амилолитических ферментов…………..1

  • 23. Аминокислоты и их свойства
    Другое Химия

    Большинство аминокислот, участвующих в биохимических превращениях, содержат первичную аминогруппу, находящуюся в ?-положении к карбоксильной функции. Во всех природных аминокислотах, входящих в состав белков (за исключением глицина), ?-углеродный атом представляет собой хиральный центр (треонин <http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B5%D0%BE%D0%BD%D0%B8%D0%BD> и изолейцин <http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%BB%D0%B5%D0%B9%D1%86%D0%B8%D0%BD> содержит два ассиметричных атома) и аминокислоты обладают оптической активностью.. Для описания конфигурации в случае ?-аминокислот обычно используют относительную D,L-номенклатуру. Считают, что кислота относится к L-ряду, если в каноническом написании фишеровской проекции аминогруппа расположена слева (Рис. 1).

  • 24. Аминокислоты, белки
    Другое Химия

    Каждый Б. характеризуется специфической аминокислотной последовательностью и индивидуальной пространственной структурой (конформацией). На долю белков приходится не менее 50% сухой массы органических соединений животной клетки. Функционирование белка лежит в основе важнейших процессов жизнедеятельности организма. Обмен веществ (пищеварение, дыхание и др.), мышечное сокращение, нервная проводимость и жизнь клетки в целом неразрывно связаны с активностью ферментов - высокоспецифичных катализаторов биохимических реакций, являющихся белками. Основу костной и соединительной тканей, шерсти, роговых образований составляют структурные белки. Они же формируют остов клеточных органелл (митохондрий, мембран и др.). Расхождение хромосом при делении клетки, движение жгутиков, работа мышц животных и человека осуществляются по единому механизму при посредстве белка сократительной системы (напр., Актин, Миозин). Важную группу составляют регуляторные белки, контролирующие биосинтез белка и нуклеиновых кислот. К регуляторным белкам относятся также пептидно-белковые гормоны, которые секретируются эндокринными железами. Информация о состоянии внешней среды, различные регуляторные сигналы (в т. ч. гормональные) воспринимаются клеткой с помощью спец. рецепторных белков, располагающихся на наружной поверхности плазматической мембраны. Эти белки играют важную роль в передаче нервного возбуждения и в ориентированном движении клетки (хемотаксисе). В активном транспорте ионов, липидов, сахаров и аминокислот через биологические мембраны участвуют транспортные белки, или белки-переносчики. К последним относятся также гемоглобин и миоглобин, осуществляющие перенос кислорода. Преобразование и утилизация энергии, поступающей в организм с питанием, а также энергии солнечного излучения происходят при участии белков биоэнергетической системы (напр., родопсин, цитохромы). Большое значение имеют пищевые и запасные белки ( напр., Казеин, Проламины), играющие важную роль в развитии и функционировании организмов. Защитные системы высших организмов формируются защитными белками, к которым относятся иммуноглобулины (ответственны за иммунитет), белки комплемента (ответственны за лизис чужеродных клеток и активацию иммунологической функции), белки системы свертывания крови ( напр. Тромбин, Фибрин) и противовирусный белок интерферон.

  • 25. Амины
    Другое Химия

    По химическим свойствам анилин во многом аналогичен предельным аминам, однако по сравнению с ними является более слабым основанием, что обусловлено влиянием бензольного кольца. Свободная электронная пора атома азота, с наличием которой связаны основные свойства, частично втягивается в П электронную систему бензольного кольца:

  • 26. Аммиак и аминокислоты, их роль в нашей жизни
    Другое Химия

    Поэтому, например, формулу аминокислоты глицина - NH2-CH2-СООH - правильнее было бы записать как NH3+-CH2-COO-Только в наиболее простой по структуре аминокислоте - глицине - в роли радикала выступает атом водорода. У остальных аминокислот все четыре заместителя при ? -углеродном атоме различны (т. е. ? -углеродный атом углерода асимметричен). Поэтому эти аминокислоты обладают оптической активностью(способны вращать плоскость поляризованного света) и могут существовать в форме двух оптических изомеров - L (левовращающие) и D (правовращающие). Однако все природные аминокислоты являются L-аминокислотами. К числу же исключений можно отнести D-изомеры глутаминовой кислоты, аланина, валина, фенилаланина, лейцина и ряда других аминокислот, которые обнаружены в клеточной стенке бактерий; аминокислоты D-конформации входят в состав некоторых пептидных антибиотиков(в том числе актиномицинов, бацитрацина, грамицидинов A и S), алкалоидов из спорыньи и т. д.

  • 27. Ампульное производство гентамицина сульфата
    Другое Химия

    Загружено:

    1. Споровая суспензия 10 см3.
    2. Агар микробиологический 50 гр.
    3. Калий азотнокислый 2.5 гр.
    4. Калий фосфорнокислый двузамещенный 1.25гр.
    5. Магний сернокислый 7-водный 1.25 гр.
    6. Натрий хлористый
    7. для агаризованных сред 1.25 гр
    8. для ферментационных сред 18.0 гр.
    9. Железо сернокислое, 7-водное 0.025 гр.
    10. Крахмал картофельный пищевой
    11. для агаризованных сред 50 гр.
    12. для посевных сред 66 гр.
    13. для ферментационных сред 300 гр.
    14. Экстракт кукурузный сгущенный 13.75 гр.
    15. Мука соевая дезодорированная необезжиренная
    16. для посевных сред 27.5 гр.
    17. для ферментационных сред 180 гр.
    18. Мел химически осажденный
    19. для посевных сред 8.25 гр.
    20. для ферментационных сред 42.00 гр.
    21. Аммоний сернокислый 18.00 гр.
    22. Кобальт хлористый без никеля 6-водный 0.0048 гр.
    23. Почва садово-огородная 10 см3.
    24. Вода питьевая
    25. для агаризованных сред до 2500 см3.
    26. для посевных сред до 2750 см3.
    27. для ферментационных сред до 6000см3.
  • 28. Анализ азота и его соединений
    Другое Химия
  • 29. Анализ и технологическая оценка химического производства
    Другое Химия

    Прямой коксовый газ, выходящий из камеры при температуре 700800° С, поступает в газосборник /, где охлаждается до 80° С водой; при этом из газа частично конденсируется смола и твердые вещества. Для дополнительного выделения смолы газ охлаждают в холодильнике 2 до 2030° С. Сконденсировавшаяся смола и надсмольная вода из газосборника 7 и холодильника 2 поступают в сборник 3, где разделяются на три слоя: нижний твердые вещества, средний смола» верхний надсмольная вода. В надсмольной воде содержится аммиак. Для окончательного выделения из газа туманообразной смолы газ из холодильника 2 поступает в электрофильтр 4, где из него выделяется смола, стекающая в сборник 3. Для продвижения прямого коксового газа через систему аппаратов очистки применяется турбогазодувка 5. Пройдя турбогазодувку, газ нагревается в подогревателе 7 до 60 70° С и поступает в сатуратор 6 аппарат барботажного типа, в котором находится 7678% H^SO^. Аммиак, содержащийся в газе, реагирует с HoS04 с образованием сульфата аммония;

  • 30. Анализ технической серной кислоты и олеума
    Другое Химия

    Приготовление шкалы стандартов. В 4 стакана емкостью 300-400 мл вносят 2; 4; 6 и 8 мл раствора Б, что соответствует 0,02; 0,04; 0,06 и 0,08 мг селена. Приливают по 5 мл раствора хлорида железа, 50 мл воды и 22 мл (40 г) серной кислоты. Растворы помещают в холодную водяную баню и осторожно, при непрерывном перемешивании нейтрализуют аммиаком до образования нерастворимого осадка гидроокиси железа, после чего приливают еще 5 мл раствора аммиака. Полученные осадки сразу, не допуская их пептизации, отсасывают на воронке Бюхнера через фильтр с синей лентой диаметром 7-11 см, промывают 50-70 мл воды и фильтраты отбрасывают. Осадки на фильтрах растворяют в 3,5 мл соляной кислоты, которую приливают по каплям из пипетки. Если 3,5 мл кислоты оказывается недостаточно, то приливают еще 0,5-1,5 мл. Раствор отсасывают и промывают фильтр восьмикратным объемом воды. Раствор с промывными водами количественно переносят в стакан емкостью 50-100 мл и приливают 6 мл раствора аскорбиновой кислоты. Через 30 мин раствор, обесцвеченный вследствие восстановления железа (Ш), содержащий селен в коллоидном состоянии, помещают в делительную воронку емкостью 100 мл, приливают 10 мл бутилового спирта и встряхивают смесь 1 мин. После расслоения водную фазу отбрасывают, а органическую помещают в колориметрический цилиндр, в который предварительно налито 15-20 мл воды. Если при этом наблюдается помутнение жидкости, то цилиндр помещают в теплую (40-50?С) водяную баню до исчезновения помутнения. На границе раздела фаз образуется окрашенная в красный цвет пленка коллоидного селена, интенсивность окраски которой пропорциональна содержанию селена. Эталоны устойчивы в течение месяца.

  • 31. Аномалии воды
    Другое Химия

    Земная вода и поглощает, и возвращает очень много тепла, и тем самым “выравнивает” климат. Особенно заметно на формирование климата материков влияют морские течения, образующие в каждом океане замкнутые кольца циркуляции. Наиболее яркий пример влияние Гольфстрима, мощной системы тёплых течений, идущих от полуострова Флорида в Северной Америке до Шпицбергена и Новой Земли. Благодаря Гольфстриму средняя температура января на побережье Северной Норвегии, за Полярным кругом, такая же, как в степной части Крыма, - около 00 С, т. е. повышена на 15 200 С. А в Якутии на той же широте, но вдали от Гольфстрима минус 400 С. А от космического холода предохраняют Землю те молекулы воды, которые рассеяны в атмосфере в облаках и в виде паров. Водяной пар создаёт мощный “парниковый эффект”, который задерживает до 60% теплового излучения нашей планеты, не даёт ей охлаждаться. По расчётам М.И.Будыко, при уменьшении содержания водяного пара в атмосфере вдвое средняя температура поверхности Земли понизилась бы более чем на 50 С (с 14,3 до 90 С). На смягчение земного климата, в частности на выравнивание температуры воздуха в переходные сезоны весну и осень, заметное влияние оказывают огромные величины скрытой теплоты плавления и испарения воды.

  • 32. Антиоксиданты
    Другое Химия

    Каротины защищают от:

    1. Сердечных заболеваний: предотвращают окисление холестерина, которое, как считается, приводит к атеросклерозу. Могут помочь в лечении стенокардии у тех, кто уже болен сердечным заболеванием. Исследования показали, что у людей, получающих достаточное количество этого вещества из фруктов и овощей, снижен риск сердечных заболеваний.
    2. Рака груди, кожи, шейки матки, легких, толстой кишки, мочевого пузыря: защищает ДНК и другие клеточные структуры от разрушения свободными радикалами. Клинические исследования показали, что бета-каротин может остановить образование злокачественных опухолей. Каротины также предотвращают рак за счет своего антиокислительного действия, хотя механизм этого процесса еще не изучен.
    3. Вреда, наносимого курением и загрязнением воздуха: у курильщиков с низким содержанием бета-каротина в крови чаще развивается рак.
    4. Инфекционных заболеваний: бета-каротин повышает иммунитет. Вместе с витамином E он снижает разрушительную силу свободных радикалов.
    5. Нарушений светочувствительности: у больных с повышенной чувствительностью к яркому свету (выражается в сыпи и крапивнице) наблюдалось улучшение в 80% случаев при лечении бета-каротином.
  • 33. Апельсиновое масло
    Другое Химия

    К атмовитаминам относят аэроионы, озон, летучие фитоорганические вещества (эфирные масла), которые воспринимаются человеком в виде запахов. Установлено, что существует два механизма восприятия запахов - ассоциативный и рефлекторный. Первый основан на запоминании взаимосвязи запахов с привычными представлениями и влияет в основном на психоэмоциональную сферу человека. Второй - с влиянием пахучих веществ на обонятельные рецепторные клетки в биологически активных точках средней части верхней носовой раковины и носовой перегородки, связанные с обонятельным анализатором, гипоталамусом и лимбической системой. Эти чрезвычайно активные системы связаны с другими жизненно важными участками головного мозга, регулирующими частоту сердечных сокращений, кровяное давление, ритм дыхания и прочие, жизненно важные функции организма. Причем обонятельный рефлекс специфичен для каждого аромата. Запах должен точно подходить к рецептору. Вот почему пахучие синтетические вещества менее эффективны по сравнению с природными веществами: они способны лишь вызвать соответствующие ассоциации, но рефлекторный компонент зачастую отсутствует. Это связано со сложной многокомпонентной структурой душистых природных веществ, которую невозможно воссоздать в лабораторных условиях. Однако рефлекторная реакция человека на запах затрагивает как психоэмоциональную сферу, так и физиологическую. Причем минимальная концентрация пахучего вещества во вдыхаемом воздухе вызывает весьма ощутимые реакции организма. Несколько капель эфирного масла жасмина в испаритель возбуждает деятельность головного мозга не меньше, чем кофе. Например, эвкалипт улучшает дыхание, очищает органы носоглотки. Чтобы стать квалифицированным специалистом по ароматерапии, необходима тщательная подготовка, знание анатомии, физиологии, лечебного действия более чем ста эфирных масел. Однако каждый может использовать эфирные масла для профилактических целей, для поднятия жизненного тонуса, работоспособности, снятия усталости и стрессов. При этом следует учитывать, что у женщин обоняние развито тоньше, поэтому они обычно более восприимчивы к запахам, ароматерапии. У курящих людей обоняние наоборот снижено. Кроме того, повышение чувствительности к запахам отмечается весной и летом, что соответствует природным биологическим ритмам расцвета растений и насыщения атмосферного воздуха природными атмовитаминами.

  • 34. Ароматические углеводороды
    Другое Химия

    При остром отравлении наблюдаются головная боль, тошнота, рвота, возбуждение, подобно алкогольному, затем постепенное угнетение, изредка судороги; смерть наступает от остановки дыхания. Для хронических отравлений характерны тяжелые поражения системы крови и кроветворных органов, сопровождающиеся снижением содержания в крови эритроцитов, лейкоцитов и тромбоцитов, расстройства функции нервной системы, поражения печени и органов внутренней секреции. Наиболее тяжелые хронические отравления вызывает бензол. При действии паров или пыли ароматических углеводородов наблюдается помутнение хрусталика. Раздражающее действие производных бензола на кожу возрастает по мере увеличения числа метильных групп, особенно выражено оно у мезитилена (триметилбензол). Замещение водорода в боковой цепи на галоген (хлор, бром) усиливает раздражающее действие ароматических углеводородов на дыхательные пути и слизистые оболочки глаз. Токсические свойства ароматических амино- и нитросоединений связаны с их способностью превращать оксигемоглобин в метгемоглобин.

  • 35. Ароматичні вуглеводні сполуки
    Другое Химия

    Поряд з реакціями SE для алкілбензенів характерні реакції галогенування за механізмом SR, які проводять у відповідних умовах. Заміщення атомів Н у боковому ланцюгу на галоген проходить селективно, особливо при бромуванні: переважно заміщується бензильний атом Н, тобто гідроген, безпосередньо сполучений з атомом карбону, найближчим до ароматичного ядра. Така селективність пояснюється впливом бензенового кільця на міцність зв¢язку С-Н у бензильному положенні і невеликою енергією зв¢язку (314кДж/моль). З цієї причини швидкість радикального бромування толуолу у 3 рази більша, ніж бромування ізобутану (нагадуємо, що при третинному карбоні енергія зв¢язку С-Н дорівнює 376кДж/моль) і аж у 108 разів більша, ніж бромування метану. Хлор як більш реакційно активний реагент,виявляє не таку повну селективність (масове співвідношення між ізомерними продуктами наведене у дужках):

  • 36. Астат
    Другое Химия

    АСТАТ (лат. Astatium), астатин, Аt - радиоактивный химический элемент VII группы периодической системы Менделеева, атомный номер 85. Стабильных изотопов у астата нет; известно не менее 20 радиоактивных изотопов астата, из которых наиболее долгоживущий 210At имеет период полураспада T1/2 8,3 ч. Многократные попытки ученых разных стран открыть элемент № 85 всевозможными химическими и физическими способами в природных объектах были неудачны. В 1940 Э. Сегре, Т. Корсон и У. Мак-Кензи получили на циклотроне в Беркли (США) первый изотоп 211At, бомбардируя висмут -частицами. Название "астат" дано от греческого astatos - неустойчивый. Лишь после этого искусственного получения астата было показано, что 4 его изотопа (215At, 216At, 218At и 219At) образуются в очень маловероятных (5*10-5 - 0,02%) ответвлениях трех природных рядов радиоактивного распада урана и тория. Астат хорошо адсорбируется на металлах (Ag, Au, Pt), легко испаряется в обычных условиях и в вакууме. Благодаря этому удается выделить астат (до 85%) из продуктов облучения висмута путем их вакуумной дистилляции с поглощением астата серебром или платиной. Химические свойства астата очень интересны и своеобразны; он близок как к иоду, так и к полонию, т. е. проявляет свойства и неметалла (галогена) и металла. Такое сочетание свойств обусловлено положением астата в периодической системе: он является наиболее тяжелым (и следовательно, наиболее "металлическим") элементом группы галогенов. Подобно галогенам астат дает нерастворимую соль AgAt; подобно иоду окисляется до 5-валентного состояния (соль AgAtO3 аналогична AgJO3). Однако, как и типичные металлы, астат осаждается сероводородом даже из сильно кислых растворов, вытесняется цинком из сернокислых растворов, а при электролизе осаждается на катоде. Присутствие астата определяют по характерному -излучению.

  • 37. Атмосферная перегонка нефти
    Другое Химия

    Нефть, нагретая в теплообменниках 2, поступает четырьмя параллельными потоками в электродегидраторы 3. Обессоливание проводится в две ступени с применением деэмульгатора. Солёная вода из электродегидраторов второй ступени вторично используется для промывки нефти на первой ступени. Кроме того, в качестве промывочной воды на второй ступени используют водные конденсаты, образующиеся в процессе конденсации пара на установках атмосферно-вакуумной перегонки. Обессоленная нефть насосом прокачивается через группу регенеративных теплообменников 2 и после нагрева двенадцатью параллельными потоками в трубчатой печи 4 поступает на перегонку в атмосферную колонну 5. Отводимые с верха колонны пары конденсируются в две ступени. На первой обеспечивается более низкое содержание газообразных углеводородов в составе орошения, чем в дистилляте. Несконденсированная газовая и жидкая фаза бензина совместно дополнительно охлаждаются и поступают в сырьевую ёмкость 9 дебутанизатора 10. Из атмосферной колонны 5 через отпарные колонны 6 одновременно отбирают три боковых погона: фракцию 140-2500С и два компонента дизельного топлива - фракцию 250-3500С и фракцию 320-3800С. Остатком атмосферной колонны является мазут. В низ атмосферной колонны и отпарных колонн 6 подаётся перегретый водяной пар. Стабилизация бензина проводится в дебутанизаторе 10.

  • 38. Атомизаторы и источники возбуждения в аналитической химии
    Другое Химия

    В промышленных конструкциях ЭТА имеется специальный блок питания, позволяющий, по заранее заданной программе, в зависимости от методики, регулировать время и температуру нагрева трубки. На первой стадии печь нагревается до температуры, прикоторой удаляются растворитель и кристаллизационная вода (100l20°C). Во второй стадии температура повышается настолько, чтобы можно было разрушить соли металлов с неорганическими или органическими анионами. На третьей стадии температура должна быть резко повышена. При этом образуемые на предыдущем этапе оксиды восстанавливаются до свободного металла , который переходит в парообразное состояние (процесс атомизации). Четвертая высокотемпературная стадия предназначена для очистки печи от остатков пробы путем выноса их инертным газом. После этого прибор готов для анализа новой порции анализируемого раствора. для предотвращения разрушения графитовых трубок при их нагреве и для ускорения выноса паров анализируемого материала через внутренние и внешние стенки трубки пропускают инертный газ. На стадии атомизации, когда необходимо повысить концентрацию свободных атомов, предусмотрено возможность автоматического отключения потока инертного газа.

  • 39. Атомное ядро
    Другое Химия

    Бор, как и Томсон до него, ищет такое расположение электронов в атоме, которое объяснило бы его физические и химические свойства. Бор берет за основу модель Резерфорда. Ему также известно, что заряд ядра и число электронов в нем, равное числу единиц заряда, определяется местом элемента в периодической системе элементов Менделеева. Таким образом, это важный шаг в понимании физико-химических свойств элемента. Но остаются непонятными две вещи: необычайная устойчивость атомов, несовместимая с представлением о движении электронов по замкнутым орбитам, и происхождение их спектров, состоящих из вполне определенных линий. Такая определенность спектра, его ярко выраженная химическая индивидуальность, очевидно, как-то связана со структурой атома. Все это трудно увязать с универсальностью электрона, заряд и масса которого не зависят от природы атома, в состав которого они входят. Устойчивость атома в целом противоречит законам электродинамики, согласно которым электроны, совершая периодические движения, должны непрерывно излучать энергию и, теряя ее, “падать” на ядро. К тому же и характер движения электрона, объясняемый законами электродинамики, не может приводить к таким характерным линейчатым спектрам, которые наблюдаются на самом деле. Линии спектра группируются в серии, они сгущаются в коротковолновом “хвосте” серии, частоты линий соответствующих серий подчинены странным арифметическим законам.

  • 40. Ацетали и кетали – получение и применение в органическом синтезе
    Другое Химия

    Ацетали представляют собой широкий и легко доступный класс органических соединений. Однако долгое время они не находили сколько-нибудь значительного применения в органическом синтезе. Единственной синтетической реакцией, в котором использовалась ацетальная группа, была реакция ацеталей с магнийорганическими соединениями, открытая еще Чичибабиным. Но эта реакция, протекающая в жестких условиях, при температурах выше 100°, не нашла широкого применения. Использование ацеталей было связано в основном с необходимостью защиты карбонильных групп, например, в синтезах стероидов. Характерно, что ацетали, образующиеся в качестве промежуточных продуктов в промышленных синтезах спиртов из СО и Н2, рассматриваются как нежелательные продукты и находят лишь ограниченное применение.