Информация по предмету Химия

  • 181. Йод
    Другое Химия

    Искусственно радиоактивные изотопы иода - 125I, 131I, 132I и другие широко используются в биологии и особенно в медицине для определения функционального состояния щитовидной железы и лечения ряда её заболеваний. Применение радиоактивного иода в диагностике связано со способностью иода избирательно накапливаться в щитовидной железе; использование в лечебных целях основано на способности -излучения радиоизотопов иода разрушать секреторные клетки железы. При загрязнениях окружающей среды продуктами ядерного деления радиоактивные изотопы иода быстро включаются в биологический круговорот, попадая, в конечном счете, в молоко и, следовательно, в организм человека. Особенно опасно их проникновение в организм детей, щитовидная железа ктотрых в 10 раз меньше, чем у взрослых людей и к тому же обладает большей радиочувствительностью. С целью уменьшения отложения радиоактивных изотопов иода в щитовидной железе рекомендуется применять препараты стабильного И. (по 100 - 200 мг на прием). Радиоактивный иод быстро и полностью всасывается в желудочно-кишечном тракте и избирательно откладывается в щитовидной железе. Его поглощение зависит от функционального состояния железы. Относительно высокие концентрации радиоизотопов иода обнаруживаются также в слюнных и молочной железах и слизистой желудочно-кишечного тракта. Не поглощенный щитовидной железой радиоактивный иод почти полностью и сравнительно быстро выделяется с мочой.

  • 182. К вопросу о металлической связи в плотнейших упаковках химических элементов
    Другое Химия

    Примерно, как для некоторых случаев применения граничных условий Борна-Кармана, рассмотрим сильно упрощенный одномерный случай зоны проводимости. Вариант первый: тонкая замкнутая трубка, полностью заполненная электронами кроме одного. Диаметр электрона примерно равен диаметру трубки. При таком заполнении зоны, при локальном передвижении электрона, наблюдается противоположное движение "места" незаполнившего трубку, электрона, то есть движение неотрицательного заряда. Вариант второй: в трубке один электрон - возможно движение только одного заряда - отрицательно заряженного электрона. Из этих двух крайних вариантов видно, что знак носителей, определяемых по коэффициенту Холла, в какой-то степени, должен зависеть от наполнения зоны проводимости электронами. Рисунок 1.

  • 183. Калий и натрий
    Другое Химия

    Калий (англ. Potassium, франц. Potassium, нем. Kalium) открыл в 1807 г. Дэви, производивший электролиз твердого, слегка увлажненного едкого кали. Дэви именовал новый металл потассием (Potassium), но это название не прижилось. Крестным отцом металла оказался Гильберт, известный издатель журнала "Annalen deг Physik", предложивший название "калий"; оно было принято в Германии и России. Оба названия произошли от терминов, применявшихся задолго до открытия металлического калия. Слово потассий образовано от слова поташ, появившегося, вероятно, в XVI в. Оно встречается у Ван Гельмонта и во второй половине XVII в. находит широкое применение в качестве названия товарного продукта - поташа - в России, Англии и Голландии. В переводе на русский язык слово potashe означает "горшечная зола или зола, вываренная в горшке"; в XVI - XVII вв. поташ получали в огромных количествах из древесной золы, которую вываривали в больших котлах. Из поташа приготавливали главным образом литрованную (очищенную) селитру, которая шла на изготовление пороха. Особенно много поташа производилось в России, в лесах вблизи Арзамаса и Ардатова на передвижных заводах (майданах), принадлежавших родственнику царя Алексея Михайловича, ближнему боярину Б.И.Морозову. Что касается слова калий, то оно происходит от арабского термина алкали (щелочные вещества). В средние века щелочи, или, как тогда говорили, щелочные соли, почти не отличали друг от друга и называли их именами, имевшими одинаковое значение: натрон, боракс, варек т. д. Слово кали (qila) встречается приблизительно в 850 г. у арабских писателей, затем начинает употребляться слово Qali (al-Qali), которое обозначало продукт, получаемый из золы некоторых растений, с этими словами связаны арабские qiljin или qaljan (зола) и qalaj (обжигать). В эпоху иатрохимии щелочи стали подразделять на "фиксиро- ванные" и "летучие". В XVII в. встречаются названия alkali fixum minerale (минеральная фиксированная щелочь или едкий натр), alkali fixum. vegetabile (растительная фиксированная щелочь или поташ и едкое кали), а также alkali volatile (летучая щелочь или NН3). Блэк установил различие между едкими (caustic) и мягкими, или углекислыми, щелочами. В "Таблице простых тел" щелочи не фигурируют, но в примечании к таблице Лавуазье указывает, что фиксированные щелочи (поташ и сода), вероятно, представляют собой сложные вещества, хотя природа их составных частей еще не изучена. В русской химической литературе первой четверти XIX в. калий назывался потассий (Соловьев, 1824), поташ (Страховй, 1825), поташий (Щеглов, 1830); в "Магазине Двигубского" уже в 1828 г. наряду с названием поташ (сернокислый поташ) встречается название кали (едкое кали, кали соляный и др.). Название калий стало общепринятым после выхода в свет учебника Гесса.

  • 184. Кальций
    Другое Химия

    Кальций один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Са. У некоторых организмов содержание Са достигает 38% : у человека 1,4 2 %. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов Са, Na и К во внеклеточных средах. Растения получают Са из почвы. По их отношению к Са растения делят на кальцефилов и кальцефобов. Животные получают Са с пищей и водой. Са необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активизации ряда ферментов. Ионы Са передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свёртывании. В клетках почти весь Са находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20 40 % Са может быть связано с белками. У животных, обладающих скелетом, до 97 99 % всего Са используется в качестве строительного материала: у беспозвоночных в основном в виде СаСО3 (раковина моллюсков, кораллы), у позвоночных в виде фосфатов. Многие беспозвоночные запасают Са перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях. Содержание Са в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желёз. Важнейшую роль в этих процессах играет витамин D. Всасывание Са происходит в переднем отделе тонкого кишечника. Усвоение Са ухудшается при снижении кислотности в кишечнике и зависит от соотношения Са, фосфора и жира в пище. Оптимальные соотношения Са/Р в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище Р и щавелевой кислоты всасывание Са ухудшается. Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са/жир в пище человека 0,04 0,08 г. Са на 1г. жира. Выделение Са происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Са с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит, у взрослых животных изменение состава и строения скелета (остеомаляция).

  • 185. Кальций и его роль для человечества
    Другое Химия

    Кальций распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть содержится в скелете и зубах в виде фосфатов. Из различных форм карбоната кальция (извести) состоят скелеты большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также в обеспечении постоянного осмотического давления крови. Ионы кальция также служат одним из универсальных вторичных посредников и регулируют самые разные внутриклеточные процессы мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов и др. Концентрация кальция в цитоплазме клеток человека составляет около 10?7 моль, в межклеточных жидкостях около 10?3 моль.

  • 186. Каменный уголь
    Другое Химия

    Уголь это остатки растений, погибших многие миллионы лет назад, гниение которых было прервано в результате прекращения доступа воздуха. Поэтому они не смогли отдать в атмосферу отобранный у нее углерод. Доступ воздуха прекращался особенно резко там, где болота и заболоченные леса опускались в результате тектонических подвижек и изменения климатических условий и покрывались сверху другими веществами. При этом растительные останки превращались под воздействием бактерий и грибов ( углефицировались) в торф и дальше в бурый уголь, каменный уголь, антрацит и графит. По составу основного компонента органического вещества угли подразделяются на три генетические группы: гумолиты, сапропелиты, сапрогумолиты. Преобладают гумолиты, исходным материалом которых явились остатки высших наземных растений. Отложение их произошло преимущественно в болотах, занимавших низменное побережье морей, заливов, лагун, пресноводных бассейнов. Накапливающийся растительный материал в результате биохимического разложения перерабатывался в торф, при этом значительное влияние оказывали обводнённость и химический состав водной среды. Содержание углерода в каменном угле колеблется от 75 до 90 процентов. Точный состав обуславливается месторасположением и условиями преобразования угля. Минеральные примеси находятся либо в тонкодисперсном состоянии в органической массе, либо в виде тончайших прослоек и линз, а также кристаллов и конреций. Источником минеральных примесей в ископаемых углях могут быть неорганические части растений углеобразователей, минеральные новообразования, выпадающие из растворов вод, циркулирующих в торфяниках и т.д. Состав минеральных примесей кварц, глинистые минералы, полевые шпаты, пирит, марказит, карбонаты и другие соединения, содержащие Большая часть минеральный примесей при сжигании превращается в золу.

  • 187. Камеры хлопьеобразования
    Другое Химия

    Таким образом, камеры хлопьеобразования предназначены для создания благоприятных условий на завершающей второй стадии процесса коагуляции хлопьеобразования, чему способствует плавное перемешивание потока. На размеры образующихся хлопьев в процессе медленного перемешивания обрабатываемой воды влияет его интенсивность и продолжительность, солевой состав воды, природа примесей (коллоидные или диспергированные), а также силы адгезии, удерживающие частицы примесей связанными между собой. Укрупнение образующихся в процессе гидролиза коагулянта хлопьев происходит постепенно в течение некоторого времени, варьируемого согласно СНиПа в пределах 6 ... 30 мин и более. Первоначально протекает стадия скрытой коагуляции, характеризующаяся формированием первичных мельчайших хлопьев, которые затем укрупняются и образуют крупные видимые агрегаты. При этом структура образующихся хлопьев гидроксида железа значительно прочнее и они имеют большую плотность, чем гидроксид алюминия. На структурообразование хлопьев оказывает влияние солевой состав воды. Так, возрастание концентрации гидрокарбонатов и хлоридов повышает прочность формирующихся хлопьев и, наоборот, увеличение содержания сульфатов понижает ее.

  • 188. Капельный анализ
    Другое Химия

    ИонРеагентУравнение реакцииОкраска полученного соединенияУсловия проведения реакцииAg+Соляная кислотаAgNO3 + HCl> AgCl + HNO3, AgCl + 2NH4OH>[Ag(NH3)2]Cl +2H2O, [Ag(NH3)2]Cl + 2HNO3 >AgCl + 2NH4NO3 Белый осадок, растворимый с образованием комплексных соединений, при подкислении которого снова выпадает осадокHg22+Нитрит натрияHg2(NO3)2 + 2NaNO2> Hg + Hg(NO2)2 +2NaNO3Черный или серый осадокОтсутствие избытка азотной кислотыPb2+Иодид калияPb(NO3)2 + 2KI >PbI2 + KNO3 Желтый осадокОтсутствие избытка реагентаCa2+Оксалат аммонияCaCl2 + (NH4)2C2O4 > CaC2O4 + 2NH4ClБелый осадокНейтральная или средаBa2+Дихромат калия2BaCl2 + K2Cr2O7 +2CH3COONa + H2O > 2 BaCr2O7 + 2KCl + 2CH3COOH + 2NaClЖелтый осадок Присутствие ацетата натрияZn2+ДитизонZnCl2 + 2C13H12N4S> Zn(C13H11N4S)2 + 2HClМалиново-красная окраскаПрисутствие органического растворителяAl3+Ализарин3C14H6O2(OH)2 +Al(OH)3 > Al(C14H6O2(OH)O)3 + 3H2OЯрко-красная окраскаАммиачная среда, отсутствие Fe3+, Cr3+,SnII, Mn2+SnIIИодид калияSnCl2 + KI>SnI2 +2KClКрасный осадокИзбыток реагентаSnIVСероводородSnCl4 +2HCl > H2[Sn(Cl)6], H2[Sn(Cl)6] + 2H2S > SnS2 + 6 HClЗолотисто-желтый осадокСначала перевести в комплексCr3+Перманганат калия, перекись водородаCr2(SO4)3+2KMnO4+ 5H2O>K2Cr2O7 + 2H2MnO3 + H2SO4; K2Cr2O7 + 4 H2O2 + H2SO4>2H2CrO6 + K2SO4 +3H2OОранжевая окраска раствора переходит в синий цветНаличие органического растворителяMg2+8-оксихинолинMgCl +2C9H6NOH + 2NH4OH> Mg(C9H6NO)2 + 2NH4ClЗеленовато-желтый осадок Аммиачная среда, pH=9,5-12,7Fe2+Красная кровяная соль3 FeCl2 + 2K3[Fe(CN)6] > Fe3[Fe(CN)6]2 + 6KCl Турнбулева синьpH=2-3, отсутствие окислителей и восстановителейFe3+Желтая кровяная соль4FeCl3 + 3K4[Fe(CN)6] > Fe4[Fe(CN)6]3 + 12KCl Берлинская лазурьpH=2,отсутствие оксалат-ионов, избытка реактива, окислителей и восстановителей Mn2+Висмутат натрия2Mn(NO3)2 + 5NaBiO3 + 16HNO3 > 5 Bi(NO3)3 + 5NaNO3 + 2 HMnO4 + 7 H2OРозово-фиолетовая окраска Кислая реакция среды, отсутствие восстановителей, избытка ионов марганцаCd2+СероводородCd(NO3)2 + H2S > CdS + 2HNO3 Желтый осадокОтсутствие ионов, образующих черные сульфидыCu2+ГлицеринCuSO4 + CH2OH-CHOH- CH2OH + 2NaOH > CH2O(Cu)OCH-CH2OH + 2NaNO3 +2H2OТемно-синяя окраскаСильнощелочная средаHg2+Хлорид олова(II)SnCl2 + 2HgCl2 > Hg2Cl2 + SnCl4 ; Hg2Cl2 + SnCl2 > 2Hg + SnCl4Белый осадок переходит в черныйИзбыток реактиваNi2+ДиметилглиоксимNiCl2 +2NH4OH+ +C4H8N2O2 > Ni(C4H7O2N2)2 + 2NH4Cl + 2H2ОАло-красная pH=8, отсутствие ионов железа(II)Co2+Тиоцианат аммонияCoCl2 + NH4SCN > (NH4)2[Co(SCN)4] + 2NH4Cl В водном растворе - розовая, в органической - синяяpH=4-5, насыщенный раствор реагента, отсутствие ионов железа(III)K+Гексанитрокобальтат натрия2KCl + Na3[Co(NO2)6] > K2Na[Co(NO2)6] + 2NaClЖелтый осадокНейтральная реакция среды, отсутствие катиона аммонияNa+Дигидростильбат калияNaCl + KH2SbO4 > NaH2SbO4 + KClБелый осадокНейтральная реакция среды, отсутствие катиона аммонияNH4+Реактив Несслера2NH4Cl + 2K2[Hg I4] + 4KOH >[ (Hg-O-Hg)NH2] + KCl + 7KI + 3H2OКрасно-бурый осадокРеакция проводится в "газовой камере"

  • 189. Катализ
    Другое Химия

    Эти слова принадлежат Гудри - выдающемуся исследователю в области практического использования катализа. Они были сказаны им на Международном конгрессе по катализу в 1957 г., через двадцать лет после того, как в результате долгого рутинного поиска был, наконец, разрабо- тан принципиально новый способ превращения тяжелых нефтяных остатков в высокооктановое моторное топливо каталитический крекинг нефти. По словам Гудри, идея использования катализа для расщепления углеводородов нефти до низкомолекулярных продуктов, обладающих бо- лее низкой температурой кипения, пришла ему в голову еще в 1927 г. Но только спустя десять лет в Полсборо (США) на нефтеочистительном заводе компании Сокони- Мобил была построена первая в мире промышленная ус тановка каталитического крекинга с применением в качестве катализатора соединений окиси кремния и окиси алюминия (алюмосиликата). После 1937 г. в нефтяную промышленность прочно вошли каталитические способы переработки нефти, включающие в себя множество разнообразных химических процессов. К основным из относятся: расщепление углерод-углеродных связей и изомеризация первичных продуктов расщепления (крекинг); дегидрирование п изомеризация углеводородов с образованием разветвленных и ароматических молекул минг); гидрирование ненасыщенных углеводородов с повременным удалением серы и азота в виде сероводорода и аммиака (гидроочистка); введение углеводородных фрагментов в бензольное кольцо ароматических соединений (алкилирование).

  • 190. Катализаторы в нефтепереработке
    Другое Химия

    Синтез алюмоникельмолибденового (АНМ) и алюмокобальтмолибденового (АКМ) катализатора гидроочистки проводился согласно выше представленной схеме.

    1. Для приготовления нужного катализатора в качестве носителя был выбран Al(OH)3 . В зависимости от условий получения носитель имеет разные свойства. Для нашего эксперимента взяли 250 г гидроксида алюминия. Для начала необходимо провести пептизацию сильной одноосновной кислотой. Взяли 1,5 мл азотной кислоты HNO3, предварительно сделав расчеты (на 100 г Al(OH)3 нужно 0,6 мл кислоты). После внесения кислоты образуются так называемые мицеллы (сгустки Al(OH)3 , окруженные ионами кислоты) и вода. В результате чего снижается вязкость всей массы. Теперь можно проводить модифицирование пористой структуры. В качестве модификатора был выбран триэтиленгликоль (HО-CH2-CH2-O-CH2-CH2-O-CH2-CH2-OH), объемом 62,5 мл (из расчета 25 мл на 100г). Содержимое тщательно перемешивается до однородной белой массы.
    2. Затем производится упаривание полученного вещества на «паровой бане» до консистенции пластилина.
    3. Следующий этап работы формование носителя (экструзия). Упаренную массу продавливали через фильеры для придания в данном случае цилиндрической формы (диаметр цилиндра 4 мм).
    4. Затем экструдаты сушили на воздухе, потом при температурах 60, 80. 110 оС по 2 часа, затем прокаливали при 550 оС 2 часа (скорость нагрева 1оС/мин)
    5. Предварительно сделав расчеты, приготовили пропиточный раствор. Для эксперимента нужно было получить алюмомолибденовые катализаторы с Ni и Со. Опишем ход работы синтезе АКМ катализатора Со(NO3)2 * 6 Н2О. Взяли 5 г парамолибдатаммония (NH4)6Mo7O24*4H2O (ПМА) и растворили в 15 мл дистиллированной воды, в результате чего в склянке образовался бесцветный раствор. Затем взяли 4г нитрата кобальта Со(NO3)2 * 6 Н2О и добавили в раствор 6 мл перекиси водорода H2O2. Затем нагревают и после реакции получают раствор красноватого оттенка ( в склянке с Ni она была зеленого цвета). Приготовили совместный раствор соединений Со и Мо.
    6. Следующим шагом было пропитывание носителя получившимся раствором. Данным раствором мы залили 20 г просушенного и прокаленного носителя (п.1-4) и выпаривали на паровой бане.
    7. Пропитанный катализатор необходимо высушить по 2 ч при температуре 60, 80, 110 и прокалить в течение 2 часов при 400 оС.
    8. Получившийся катализатор мы разделили на 2 образца (по 10 г каждый), один из которых просульфидировали смесью гексана C6H14 и ди-трет-бутилполисульфида (трет-С4Н9)2(S)n ( 11 мл), а затем отправили в муфельную печь на 20 мин, другой же просульфидировали в отдельном реакторе в течение 6 ч.
    9. Испытание на лабораторной установке проводится в течение 10 часов.
  • 191. Катодное осаждение – анодное растворение сплава железо-никель и структурные превращения в электролитах сплавообразования
    Другое Химия

    Изменение концентрации компонентов электролита и режима электролиза влияет на состав и структуру осадков, что проявляется в их физико-механических и физико-химических свойствах. Микротвердость Н сплавов железо-никель, независимо от состава электролита и материала анода, достигает максимального значения при ik = 10 А/см2. Согласно данным ВИМС, сплав, осажденный в этом режиме, содержит 40% железа и 60% никеля. При данной концентрации компонентов образуются твердые растворы железа в никеле, кристаллизующиеся с ГЦК решеткой. Рост микротвердости железоникелевых покрытий в интервале плотностей тока от 6 до 10 А/дм2 может быть связан с включением в осадок водорода и гидроксидов, ведущим к деформированию и сжатию кристаллов покрытия. Увеличение плотности тока осаждения более 10 А/дм2 приводит к возрастанию наводороженности покрытий, укрупнению блоков кристаллов. В результате возрастают внутренние напряжения в осадке, что ведет к его охрупчиванию и уменьшению микротвердости. Железо, никель и их сплав характеризуются прочными межатомными связями и осаждаются с внутренними напряжениями растяжения. Генерации внутренних напряжений в изучаемых покрытиях способствуют несколько факторов. Одним из них являются структурные дефекты (вакансии, двойники роста, дислокации), образование которых приводит к искажениям кристаллической решетки и смещению атомов от своих стабильных положений. После прекращения электролиза атомы внедренного водорода диффундируют из кристаллической решетки сплава, что приводит к уменьшению объема осадка и появлению внутренних напряжений. Рентгенофазовый анализ сплава позволил обнаружить образование областей, обогащенных атомами никеля, т.е. в сплаве железо-никель проявляется концентрационная неоднородность.

  • 192. Каучук
    Другое Химия

    Синтетический каучук - высокополимерный, каучукоподобный материал. Его получают полимеризацией или сополимеризацией бутадиена, стирола, изопрена, хлорпрена, изобутилена, нитрила акриловой кислоты. Подобно натуральным каучукам, синтетические имеют длинные макромолекулярные цепи, иногда разветвленные, со средним молекулярным весом, равным сотням тысяч и даже миллионам. Полимерные цепи в синтетическом каучуке в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, получаемая при этом резина, приобретает характерные физико-механические свойства.

  • 193. Каучук, строение, свойства, виды и применение в профессии коммерсанта
    Другое Химия

    Обувные резины это обширная группа искусственных материалов для низа обуви. Процесс производства этих резин состоит из следующих операций:

    1. Подготовка материалов включает сушку, измельчение и просеивание исходных материалов, а также проверку их качества. Каучук распаривают, измельчают, перетирают. В результате повышается пластичность каучука и однородность резиновой смеси.
    2. Приготовление резиновой смеси состоит в смешивании всех компонентов наполнителей, вулканизирующих веществ, ускорителей вулканизации, активаторов, мягчителей, противостарителей, красителей и других. Сначала к каучуку добавляют мягчители, а в последнюю очередь вулканизирующие вещества и порообразователи. Для предания полученной резиновой смеси формы плоских листов производят её листование на вальцах.
    3. Каландрирование (формование) метод производства сырых резиновых заготовок в виде непрерывной ленты нужной толщины и ширины. каландрирование улучшает физико-химические свойства резиновой смеси, от него зависит расход резиновых смесей и качество изделий.
    4. Штампование резиновых заготовок для получения отдельных деталей обуви, производят на штампах-прессах специальными резаками.
    5. Вулканизация завершающая операция производства резины.
  • 194. Качественный анализ анионов
    Другое Химия

    Определив предварительно присутствие отдельных групп анионов, обнаруживают их соответствующими групповыми и характерными для них реакциями. В зависимости от присутствия тех или иных анионов и катионов схемы анализа могут быть самыми различными. Например, водный раствор исследуемого вещества имеет нейтральную реакцию. При действии на отдельную пробу его раствором соляной кислоты образуется осадок, который растворяется в горячей воде. Это позволяет сделать вывод, что в растворе присутствует катион Рb2+. Проверяют катион Рb2+ - частной реакцией с иодидом калия KI. Далее обнаруживают анионы. Ими могут быть только анионы третьей группы, так как только они образуют с катионом Рb2+ растворимые в воде соли.

  • 195. Качественный анализ компонентов
    Другое Химия

    В некоторых случаях идентификация неизвестного вещества может быть обеспечена сбором фракции, соответствующей пику хроматографического разделения, и последующим анализом этой фракции физическими или химическими методами. При этом подвижная и неподвижная хроматографические фазы должны быть очищенными, чтобы фон от фазы был сведен к минимуму, они не должны вступать в химическую реакцию с растворенным веществом, должны быть совместимыми-с хроматографической системой, используемой для разделения и обнаружения пика. Неподвижная фаза не должна выноситься из колонки. Кроме того, обе фазы не должны мешать идентификации вспомогательными методами и быть летучими, чтобы их можно было легко удалить выпариванием, фракции обычно собирают вручную, хотя возможно применение коллектора фракций. Для обеспечения чистоты, соответствующей пику собираемой фракции, внутренний объем трубки между детектором и выходом канала для сбора фракций должен быть минимальным. Этот объем должен быть измерен и внесены поправки на задержку между регистрацией пика детектором и фактическим выходом пика из канала для сбора фракций. Фракции удобно собирать в чистые, сухие, защищенные от попадания света сосуды с навинчивающимися крышками и тефлоновыми прокладками во избежание загрязнений. Возможен барботаж этих фракций чистым азотом или гелием. Растворители удаляют из образца выпариванием, продувкой газом, нагреванием ИК-лампой. Воду и смеси органических растворителей с водой удаляют выпариванием или лиофильной сушкой. Летучие буферные соединения удаляют при повышенных температурах.

  • 196. Качественный исследование редких элементов
    Другое Химия

    Реферативный журнал

    1. Золь-гель сенсор, модифицированный, для определения ионов железа (2+) методом инверсионной вольтамперометрии. Моросанова Е.И., Брайнина Х.З., Стожко Н.Ю., Азарова Ж.М.
    2. Изучение нового метода спектрофотометрического определения следовых количеств трехвалентного железа каталитическим кинетическим методом. Yang Bo, Chen Shang-dong, Xia-quan, Gao Kui.
    3. Каталитическое спектрофотометрическое определение следовых количеств серебра с использованием натрийдодецилбензолсульфокислоты в качестве растворимого агента. Huang Xiao-Dong, Chen Mei-Zhu, Ihuang Jian-Wei
    4. Новое экстракционно-спектрофотометрическое определение железа (3+) с изобутилксантаном калия. Rao B. Sreenivasa, Ramakrishna K., Venkateswarlu
    5. Определение Au, Ag, Pd в форме комплексных аммиакатов атомно-спектральными методами. Рязанова Л. Н., Филатова Д.Г., Ширяева О.Л., Зоров Н.Б., Карпов Ю.А.
    6. Сравнительное изучение определения железа в базальте методом каталико-спектрофотометрическим и энергодисперсионной рентгеновской спектрометрии. Wang Guang-jian, Shang De-ku, Hu Linna, Zhang Kai-liang, Guo Ya-jie.
  • 197. Кинетика полимеризации изопрена под влиянием каталитических систем на основе карбоксилатных солей лантаноидов
    Другое Химия

    На рис. 1,а представлена серия зависимостей, характеризующих применение по ходу полимеризации количества металлополимерных связей (MeР), определенных по тритиевым меткам в полимере после обработки его СНзОТ. Их увеличение с ростом конверсии изопрена и изменение характера зависимостей при варьировании содержания в системе ДИБАГ свидетельствуют о протекании реакций передачи полимерной цепи на алюминийорганические сокатализаторы. Количество действующих активных центров, определенное экстраполяцией зависимостей [Me Р] / [Nd] конверсия (прямолинейных в полулогарифмических координатах) к нулевой конверсии изопрена, колеблется от 2 (ТИБА) до 7 8% (ДИБАГ) от введенного неодима. Использование ТИБА вместо ДИБАГ в составе катализаторов приводит к более высоким значе- [ ниям констант роста кр (табл. 1). Зависимости lg [А1] 0/ [Al] * t (рис. 1, б), где [А1] о начальная концентрация ТИБА или ДИБАГ, а \ [А1], их концентрация к моменту времени t, также прямолинейны, j что свидетельствует о первом порядке реакций образования алюминий-полимерных соединений по ТИБА (или ДИБАГ). Поскольку доля алюминийполимерных соединений к концу процесса полимеризации не превышает 10% от общего количества алюминийорганических соединений, их повторное взаимодействие с активными центрами можно не учитывать и рассматривать реакции передачи полимерной цепи как необратимые

  • 198. Кинетические закономерности электрохимического окрашивания анодных оксидных пленок на алюминии и его сплавах
    Другое Химия

    Исследования показали, что в процессе электрохимического окрашивания АОП в растворах минеральных солей в потенциостатическом режиме вместе с плотностью тока меняется pHs приэлектродного слоя (рис. 8-10). Величина рН исходного раствора CuS04 - 24 г/л, MgS04 - 15 г/л, H2S04-5 г/л составляет 1,26. В момент включения поляризующего тока при всех потенциалах окрашивания происходит подкисление приэлектродного слоя: pHs=l,18-l,03. С течением времени pHs увеличивается до 1,09-1,21. В исследованном диапазоне потенциалов возможно полное или частичное восстановление катионов меди. Зафиксированное подкисление приэлектродного слоя можно объяснить протеканием реакции: представлена зависимость рН5-т для АОП на алюминии в растворе состава, г/л: NiS04 - 30, MgS04 - 15, Н3В03-15 (рН=5,2). При включении поляризующего тока, вследствие протекания процесса разряда протоносодержащих частиц, наблюдается рост pHs до 5,4-5,8; затем рН, уменьшается и начиная с 15 с устанавливается в пределах 5,24-5,32, близких к рН в объеме раствора. Смещение потенциала в отрицательную сторону до - 2,32... - 2,52 В приводит к еще большему (до 5,5-5,9) подщелачиванию приэлектродного слоя в момент включения поляризации. Однако, через - 15 с pHs достигает исходных значений 5,2...5,3. Обнаруженный эффект может быть связан с ускорением процесса разряда ионов водорода. Более сложная картина наблюдается в растворах КМп04 (рис.10), когда pHs в объеме раствора составляет 1,15. В момент включения тока pHs достигает при Ек=1.22...1,12 В значений ~1,3±0,05. В первые 15 с происходит снижение pHs до 0,2 и в дальнейшем сильно зависит от потенциала, но со временем кривые рН8-т сближаются и стремятся к исходному значению рН в объеме.

  • 199. Кислород и водород как химические элементы и простые вещества. Их получение и применение
    Другое Химия

    23

    1. Число Авогадро равно … частиц (6.02*10 )
    2. В равных объёмах разных газов при одинаковых условиях содержится одинаковое число молекул это закон…(Авагадро)
    3. Единица измерения количества вещества…(Моль)
    4. Явление, при котором происходит превращение одних веществ в другие, называется…(Химическим явлением)
    5. Дождь это … явление (Физиологическое)
    6. 21% по объёму в воздухе занимает…(Кислород)
    7. Мельчайшая частица вещества, обладающая всеми его химическими свойствами, называется…(Молекулой)
    8. Смесь двух объемов водорода с одним с одним объёмом кислорода называется…(Гремучей)
    9. При разложении марганцовки под действием температуры выделяется газ…(Кислород)
    10. В XVI веке водород получил ученый… (Теофраст Парацельс)
    11. При разложении оксида ртути в результате нагревания выделяется кислород и…(Ртуть)
    12. Закон сохранения массы вещества при химической реакции открыл…(М.В.Ломоносов)
    13. Малярный объём любого газа равен…(22.4 л)
    14. 78% по объёму в воздухе занимает…(Азот)
    15. Купоросное масло это…(Серная кислота)
    16. Формула пероксида водорода…(H2O2)
    17. Один моль газа кислорода весит…(32г)
    18. Один моль водорода весит…(2г)
    19. Формула углекислого газа…(CO2)
    20. Формула угарного газа…(CO)
    21. Явление, при котором не происходит превращения веществ друг в друга, а только изменение агрегатного состояния, называется…(Физическим)
    22. Алюминиевые и железные стружки можно разделить…(Магнитом)
  • 200. Кислород. Его свойства и применение
    Другое Химия

    Жидкий кислород входит в состав взрывчатых веществ. Длительное время для различных взрывных работ применяли аммониты и другие азотсодержащие взрывчатые вещества. Их использование представляло определенные трудности, например сложность и опасность транспортировки, необходимость строительства складов. В настоящее время взрывчатые вещества с жидким кислородом можно изготовить на месте употребления. Любое пористое горючее вещество (опилки, торф, сено, солома), будучи пропитанным жидким кислородом, становится взрывчатым. Такие вещества называются оксиликвитами и при необходимости могут заменить динамит при разработке рудных месторождений. При взрыве применяют оксиликвитный патрон простой длинный мешочек, наполненный горючим материалом, в который вставляют электронный запал. Его заряжают непосредственно перед закладкой в шпур путем погружения в жидкий кислород. Шпур это круглое отверстие, которое бурят обычно в горных породах и наполняют взрывчатым веществом. Если взрыва оксиликвитного патрона в шпуре почему-либо не произойдет, патрон разряжается сам в результате испарения из него жидкого кислорода. Действие оксиликвитов основано на чрезвычайно быстром сгорании органических веществ в чистом кислороде. Кратковременный процесс сгорания сопровождается интенсивным выделением больших количеств тепла и газов, что обуславливает применение оксиликвитов в качестве мощных взрывчатых веществ, обладающих бризантным (дробящим) действием.