Информация по предмету Химия

  • 401. Получение биогаза
    Другое Химия

    Достаточно высокое содержание метана в биогазе, а следовательно, и высокая теплота сгорания, предоставляют широкие возможности применения биогаза. При разработке систем по производству и использованию биогаза выбираются оптимальные варианты комплектации установок из множества возможных с учетом многочисленных местных и внешних условий. С точки зрения утилизации энергии биогаза можно выделить следующие основные направления его использования:

    1. для покрытия собственных энергетических нужд БГУ (в наиболее холодный период года практически весь потенциал биогаза используется для энергообеспечения установки);
    2. в качестве топлива для получения горячей воды или пара на покрытие технологических нужд очистных сооружений или сельскохозяйственных производств;
    3. для сушки сброженного осадка;
    4. в качестве топлива для получения теплого воздуха или горячих газов на сушку сельхозпродукции или обогрев сельскохозяйственных зданий;
    5. в теплицах для отопления и подкормки растений углекислым газом;
    6. для замены мазута при термической переработки отходов (25 т мазута в сутки заменяется 45000 м3биогаза);
    7. в качестве горючего для двигателей транспортных средств;
    8. для получения электроэнергии;
    9. для подпитки сетей природного газа.
  • 402. Получение и применение кальция и его соединений
    Другое Химия

    Существует несколько видов гипса - природный, жженый и безводный. Жженый гипс или алебастр получают при нагревании природного гипса до температуры 150о - 180о С. Если смешать алебастр с водой, то получится полужидкая пластическая масса, которая быстро твердеет из-за присоединения воды. Свойство жженого гипса застывать используется на практике. Алебастр смешивают с известью и используют как штукатурку. Из чистого алебастра изготавливают скульптуры, а в медицине он используется при переломах.

  • 403. Получение н-бутиленов дегидрированием н-бутана
    Другое Химия

    Работа установки со взвешенным катализатором заключается в следующем. При определенном сопротивлении и весе мелких частиц катализатора, насыпанного на решетку, создается необходимая скорость газового потока н-бутана, при которой подъемная сила уравновешивает вес и сопротивление слоя катализатора, благодаря чему частицы катализатора переходят во взвешенное состояпие и находятся в турбулентном движении. При подборе соответствующих критериев взвешенный слой будет находиться в достаточной динамической устойчивости. Теплообмен в такой системе будет осуществляться наиболее полно, местные перегревы почти исключаются. Выход н-бутилепа составляет 39%, против 34% в установке с шариковым катализатором. Регенерация катализатора производится в отдельном аппарате, что позволяет вести процесс дегидрировапия непрерывно и не иметь больших теплопотерь, связанных с периодичностью работы. Катализатором процесса дегидрирования являются зерна окиси алюминия с окисью хрома, диаметром 1,01,5мм. Указанный катализатор в отсутствии влагидовольно устойчив в работе.

  • 404. Получение серной кислоты
    Другое Химия

    А почему оксид серы SO3 не поглощают водой? Ведь можно было бы оксид серы растворить в воде: SO3 + H2O H2SO4. Но дело в том, что если для поглощения оксида серы использовать воду, образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты (оксид серы растворяется в воде с выделением большого количества теплоты, серная кислота настолько разогревается, что закипает и превращается в пар). Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Два процента воды - это так мало, что нагревание жидкости будет слабым и неопасным. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

  • 405. Получение серной кислоты из железного колчедана
    Другое Химия

    При работе с серной кислотой следует соблюдать особую предосторожность: попадание ее на кожу приводит к тяжелым ожогам. При приготовлении раствора серной кислоты ее осторожно при постоянном перемешивании приливают тонкой струёй в воду, а не наоборот. Образование гидратов обуславливает сильное водоотнимающее действие H2SO4 .Концентрированная серная кислота обугливает органические вещества .Серная кислота при нагревании реагирует почти со всеми металлами (исключая Au, Pt, Ru , Rh , Os, Ir )

  • 406. Получение серной кислоты путем гидратации оксида серы
    Другое Химия

    Сначала в печь для обжига подается пирит (серный колчедан), где он обжигается, и из него выделяется оксид серы. Потом оксид серы поступает в аппарат, именуемый циклоном. Там из оксида серы отфильтровывают наиболее крупные пылинки примесей, но самые мелкие по-прежнему остаются. Для их удаления смесь поступает в электрофильтры. Далее газовую смесь очищают от водяных паров в сушильной камере. После тщательной очистки оксид серы вместе с воздухом поступает в теплообменник для нагревания, а затем в контактный аппарат, где под влиянием катализаторов происходит окисление.

  • 407. Получение синтетических красителей реакцией азосочетания на примере синтеза 3-окси-4-карбоксиазобензола
    Другое Химия

    Первые попытки связать химическое строение красителей и их светопрочность были сделаны, по-видимому, Гебгардом. Он нашёл, что окси- и аминогруппы ускоряют выцветание, а алкалирование аминогрупп ускоряет его ещё больше. Атомы хлора , брома, сульфо- и карбоксильная группы замедляют выцветание; последняя особенно сильно. Имеет значение также и положение заместителя. Изучая ализариновые красители, Гебгард нашёл, что светопрочность зависит от числа, природы и положения заместителей; кроме окси- и аминогрупп, тиоловые группы и хинолиновое ядро усиливают выцветание, в то время как нитрогруппа ослабляет его. Из имеющихся в настоящее время многочисленных данных следует, что выцветание красителей представляет собой сложное явление и не может быть вызвано постоянным влиянием определённых групп. Так, в рядах индигоидов и антрахиноновых кубовых красителей галоидирование обычно повышает светопрочность, но в некоторых случаях, как среди этих, так и других классов красителей, галоид может не оказывать влияния или даже снижать светопрочность. Наличие сульфогруппы часто благоприятствует светопрочности, но существенным исключением является более высокая светопрочность окрасок азоидными красителями по сравнению с прямыми красителями для хлопка. По-видимому, нитрокрасители выцветают вследствие восстановления до азокси- и азосоединений и, наконец, до первичных аминов. Светопрочность азокрасителей колеблется в больших пределах, чем светопрочность красителей других групп. Этого и надо было ожидать, так как азокрасители представляют собой очень многочисленный класс, включающий типы, отличающиеся количеством азогрупп, характером циклических систем, объединяемых азогруппами, числом и природой ауксохромов. Наличие в молекуле красителя первичных аминогрупп обусловливает низкую светопрочность, а ацилирование (в особенности хлорированными красителями) повышает светопрочность. Для повышения светопрочности красителя в его молекулу могут быть введены особые группы, например SO2R, -SO2NR2, OSO2R, CF3 и алкоксильные группы. Среди прямых красителей для хлопка, как правило, жёлтые и оранжевые красители обладают более высокой светопрочностью, чем синие и зелёные. Прямые красители для хлопка бензидинового ряда обычно не прочны к свету. Средняя светопрочность комбинаций нерастворимых азокрасителей, применяемых в промышленности, около 5 баллов, а у многих достигает 6-7 (светопрочность красителей определяется в баллах, наивысший балл составляет 10). У некоторых простых азокрасителей можно установить определённую зависимость между положением заместителя в ядре и их прочностью к свету и стирке.

  • 408. Получение фенолов
    Другое Химия

    Если щелочная экстракция обеспечивает почти количественное извлечение фенолов из фракций каменноугольной смолы, выкипающих до 230 °С, то обесфеноливание высококипящих фракций смолы и тем более смол низкотемпературного коксования, связано со значительными трудностями, вызываемыми высоким содержанием в этих фракциях смолистых веществ и азотистых оснований, большой вязкостью фракций, значительным растворением в фенолятах высококипящих фенолов нейтральных масел и, наконец, ограниченной растворимостью фенолятов высококипящих фенолов в воде. Так, даже 3,5-ксилеиолят натрия сравнительно плохо растворим в воде; еще хуже растворимость солей более высококипящих фенолов. Наконец, в высококипящих фракциях, особенно фракциях сланцевых смол, содержатся пространственно затрудненные фенолы, которые практически невозможно извлечь путем щелочной экстракции из-за трудности образования фенолятов. Поэтому щелочная экстракция оказывается эффективной преимущественно для извлечения низкокипящих фенолов. Получение свободных от примесей высококипящих фенолов осуществляется в ограниченных масштабах, тем более что эти продукты находят ограниченное применение, а отпускная цена высших фенолов в ряде случаев не окупает расходы на их извлечение.

  • 409. Получение хлорида гексааминникеля
    Другое Химия

    Металлический никель получают также электролитическим путем. Осадки электролитического никеля содержат значительное количество водорода (поскольку никель осаждается в условиях высокой катодной поляризации) и и образованы из мелких кристаллов, твердость которых превосходит твердость плавленного или отпущенного металла. Электролитическим методом можно получить порошок, чешуйки или хрупкую массу никеля. Для получения порошка электролитического никеля используют электролиты содержащие простые или двойные соли, и аммиачные электролиты, содержащие соединения никеля.Порошкообразный металлический никель получается легче, чем порошкообразное железо, поскольку электролит более устойчив, а порошок никеля обладает меньшей склонностью к окислению. Для электролитического получения металлического никеля можно использовать различные растворы, содержащие соли никеля. Электролиз осуществляется в условиях определенных pH, температуры и катодной плотности тока.

  • 410. Получение хромового ангидрида
    Другое Химия

    В 1797 году Воклен повторил анализ. Растертый в порошок крокоит он поместил в раствор углекислого калия и прокипятил. В результате опыта ученый получил углекислый свинец и желтый раствор, в котором содержалась калиевая соль неизвестной тогда кислоты. При добавлении к раствору ртутной соли образовывался красный осадок, после реакции со свинцовой солью появлялся желтый осадок, а введение хлористого олова окрашивало раствор в зеленый цвет. После осаждения соляной кислотой свинца Воклен выпарил фильтрат, а выделившиеся красные кристаллы (это был оксид шестивалентного хрома) смешал с углем, поместил в графитовый тигель и нагрел до высокой температуры. Когда опыт был закончен, ученый обнаружил в тигле множество серых сросшихся металлических иголок, весивших в 3 раза меньше, чем исходное вещество. Так впервые был выделен новый элемент. Один из друзей Воклена предложил ему назвать элемент хромом (по-гречески «хрома» - окраска) из-за яркого разнообразного цвета его соединений. Сначала Воклену не понравилось предложенное название, поскольку открытый им металл имел скромную серую окраску и как будто не оправдывал своего имени. Но друзья все же сумели уговорить Воклена и, после того как французская Академия наук по всей форме зарегистрировала его открытие, химики всего мира внесли слово «хром» в списки известных науке элементов.

  • 411. Поляризація діелектричних матеріалів та їх діелектрична проникність
    Другое Химия

    За видом поляризації всі діелектрики поділяються на чотири групи:

    1. Діелектрики в яких спостерігається, електронна поляризація це неполярні, або слабо полярні гази, рідини, або тверді матеріали (парафін, сірка, полістирол, бензол, водень).
    2. Діелектрики в яких спостерігається, як електронна так і дипольно-релаксаційна поляризація. До них відносяться полярні (дипольні) органічні напіврідинні та тверді матеріали (епоксидні смоли, целюлоза, масляно-каніфольні компаунди).
    3. Тверді неорганічні діелектрики з електронною, іонною та іонно-електронно-релаксаційною поляризацією. До цієї групи відносять кристалічні матеріали кварц, слюда, камяна сіль, а також матеріали з скловидною фазою неорганічне скло, фарфор.
    4. Сегнетоелектрики, які мають спонтанну електронну, іонну або іонно-електронно-релаксаційну поляризацію (сегнетова сіль, титан барію).
  • 412. Полярография. Сущность метода. Применение в медико-биологических исследованиях
    Другое Химия

    Идея метода инверсионной полярографии состоит в выделении определяемого элемента из очень разбавленного раствора на ртутной капле или тонкой пленке ртути на графитовом электроде или просто на графитовом электроде электролизом с последующим анодным растворением полученной амальгамы. Процесс накопления происходит при потенциале, соответствующем предельному току. Зависимость силы тока от напряжения при анодном растворении имеет вид характерного пика, глубина которого h пропорциональна концентрации определяемого иона, а потенциал минимума Еmin определяется природой иона. Предел обнаружения в методике инверсионной вольтамперометрии на 2-3 порядка ниже предела обнаружения в обычных полярографических методиках. Чем больше продолжительность накопительного электролиза, тем большее каоличество металла перейдет из раствора в ртутную каплю и тем больше возрастет чувствительность анализа. Например, при анализе растворов, в которых концентрация определяемого элементы составляет 10-9 моль/л. Время электролиза доходит до 1 ч.

  • 413. Понятие химических реакций и их классификация
    Другое Химия

     

    1. Габриелян О.С. Химия. 11 класс: Учебник для общеобразовательных учреждений / О.С.Габриелян. - М.: Дрофа.- 304 с.
    2. Иванова Р.Г. Химия. Учебник для 10 кл. общеобразовательных учреждений / Р.Г.Иванова, А.А.Каверина. М.: Просвещение, 2001. 287 с.
    3. Кузнецова Н.Е. Химия. Учебник. 8 класс / Н.Е.Кузнецова, И.М.Титова, Н.Н.Гара, А.Ю.Жегин М.: Вентана-Граф, 2005. 224 с.
    4. Мануйлов А.В. Основы химии. Электронный учебник / А.В.Мануйлов, В.И.Родионов. [Электронный ресурс]. Режим доступа: http://www.hemi.nsu.ru/
    5. Химия. 8-9 класс: Поурочные планы / Авт. сост. С.Ю.Дибленко, Е.А.Смирнова, С.М.Колмыкова. Волгоград: Учитель, 2005. 169 с.
  • 414. Порох, его свойства и применение
    Другое Химия

    Сейчас в мире ведётся множество боевых действий. Войны ведутся с использованием огромного количества орудий: наземных, водных, подводных, воздушных и др. почти каждый день орудия совершенствуются, и появляются всё новые и новые виды. Но, несмотря на их разнообразие, в основе практически каждого орудия лежит порох. В орудиях порох используется с 14 века. С того времени он во многом усовершенствовался, однако современное военное дело не представляет своё существование без пороха. Люди придумали оружие массового уничтожения, в которых не применяют порох, например атомная бомба. Но эти орудия почти не используется, так как люди понимают, что они очень опасны. Поэтому войны ведутся с использованием порохового орудия.

  • 415. Портланцемент. Сухой способ производства
    Другое Химия

    Тарельчатый гранулятор имеет имеет наклонно установленный вращающийся диск с Бортами. Подаваемую на диск муку опрыскивают каплями воды, и из увлажнённой до 12 15% муки образуются шарики. В дальнейшем при вращении диска шарики окатываются, и на них налипают новые порции материала и получаются крупные гранулы. Постепенно накапливаясь в нижней части тарелки, они пересыпаются затем через её борт и поступают в бункер над конвейерным кальцинатором. Они представляют собой бесконечную колосниковую решётку, составленную из отдельных колосников и движущуюся со скоростью 30 50 м/ч. Колосниковая решётка заключена в плотный кожух. Сырьевые гранулы подаются из бункера на конвейер слоем 15 20 см. Через этот слой просасываются газы, поступающие в кальцинатор с температурой 1000 1100*С из короткой вращающейся печи. Просасывание газов может осуществляется как при однократном, так и двукратном прохождении через материал. Применяется другой метод. Для этого кальцинатор вертикальной стенкой разделяют на две камеры. Газы из печи сначала поступают в верхнее отделение камеры, далее под действием тяги вентилятора просасываются сверху вниз через слой гранул и из нижней части камер направляются через циклоны в другую камеру. Здесь они вновь пронизывают слой материала и удаляются из кальцинатора дымососом с температурой 100 150*С. Материал вначале подсушивается. Далее дегидратируется и частично декарбонизируется, и поступает на обжиг в печь с температурой около 800*С. Гранулы, провалившиеся через отверстие в решётке, попадают на конвейер и с помощью элеватора направляются в печь. Сюда же по винтовому конвейеру движется пыли из циклонов .Вращающиеся печи в сочетании с описанными кальцинаторами характеризуются различной суточной производительностью до 1000 3000 т. Рассчитанная на выпуск 1800 т/сут, состоит из печи размером 5 х 85м. И кальцинатора с площадью решётки 200 м кв. Расход тепла в печах с кальцинаторами составляет примерно 3150 -3550 кДж/кг клинкера. ИЗ вращающейся печи клинкер направляют в холодильник и далее на склад и помол.

  • 416. Практическое применение и свойства неодима
    Другое Химия

    В 1787 году лейтенант шведской армии Карл Аррениус обнаружил в заброшенном карьере близ городка Иттерби неизвестный минерал, который впоследствии был назван в честь городка, в котором он был найден, иттербитом. В 1794 году Юхан Гадолин подверг анализу иттербит и показал, что этот минерал, кроме оксидов бериллия, кремния и железа, содержит 38% оксида неизвестного элемента. Новую землю Аксель Эксберг в 1797 году назвал иттриевой, соответствующий элемент - иттрием. Примерно в то же время разные группы исследователей изучали еще один минерал - охроит (Ln2o3 xSiO2 yH2O, где Ln - лантаноид), и в 1803 году почти одновременно и независимо друг от друга Мартин Клапрот и Я. Берцелиус с В. Хизингером выделили из него землю, которую назвали цериевой, элемент - церием, а минерал охрит был переименован в церит. Открытие первого лантаноидного элемента - церия и его родственника - иттрия - наиболее бурная часть первого этапа истории редкоземельных элементов. От этих двух земель потянулась длинная цепочка ложных и истинных открытий новых элементов.

  • 417. Приборы для измерения параметров воды
    Другое Химия

    Схема проста: pH-метр обычно состоит из операционных усилителей обращения конфигурации, дающих напряжение в цепи около 17 в. Входное сопротивление прибора должно быть очень высоким - примерно от 20 до 1000 МОм, что обусловлено высоким сопротивлением зонда - стеклянного электрода, являющегося наиболее ответственным и важным элементом всех pH-метров. Инвертирующий датчик-усилитель преобразует малое напряжение зонда (0,059 вольт / pH) пропорционально единицам pH, которые затем вновь преобразуются до необходимого напряжения для активизации вольтметра, отображающего показания на шкале pH. Эти методические и схемотехнические приемы дают возможность проводить измерения ЭДС с высокой точностью вне зависимости от влияния внешних электростатических и электромагнитных помех, при любых, даже очень малых, значениях удельной электропроводности (УЭП) среды, вплоть до теоретически чистой воды. Для контроля и настройки режимов pH-метра используется пульт, соединённый с блоком электронного преобразования.

  • 418. Приготовление сорбентов и колонок для высокоэффективной жидкостной хроматографии
    Другое Химия

    Вопрос о том, нужно ли при хранении герметично закрывать концы колонок, некоторыми фирмами решается положительно, а другимиотрицательно. Первые указывают, что при высыхании сорбента в колонке образуются каналы, нарушается равномерность слоя; это ведет к ухудшению эффективности, двоению пиков, ухудшению симметрии пиков. Вторые, напротив, утверждают полную идентичность колонок до и после высыхания сорбента в случае повторного тестирования. Учитывая, что некоторые сорбенты, например, полимерные при высыхании уменьшаются в объеме и при этом равномерность слоя в колонке нарушается (особенно если такая колонка в процессе транспортировки подвергается тряске и вибрациям), целесообразно герметично закрывать концы колонок. Перейдем теперь к регенерации колонок, под которой понимают восстановление разделительных и эксплуатационных характеристик колонки, потерянных в процессе эксплуатации. Утрата первоначальных характеристик колонки проявляется в заметном увеличении рабочего давления при том же потоке, в ухудшении разделения пиков за счет потери эффективности, появлении хвостов пиков, изменении порядка выхода компонентов, в резком уменьшении или увеличении времени удерживания компонентов и т.д. Как правило, колонка утрачивает свои свойства в процессе эксплуатации в силу следующих причин. Во-первых, это нарушение допустимых параметров работы колонки по потоку и давлению растворителя, возникающее из-за ошибок оператора (неправильная задача расхода, использование высоковязких растворителей и т. п.). При этом, если давление превысит значение, использовавшееся при набивке колонки, сорбент неизбежно уплотнится, просядет, в начале колонки появится пустота (мертвый объем), пики будут размываться и эффективность колонки будет утрачена. Во-вторых, это ошибки оператора, связанные с выбором растворителя, т.е. использование растворителя с рН ниже 3 или выше 8. В этом случае происходит ускоренное разрушение, особенно при повышенных температурах, силикагелевой матрицы с растворением силикагеля, уменьшением его механической прочности, химическим отщеплением привитой фазы. Изменение природы сорбента, естественно, меняет параметры удерживания веществ и приводит к нарушению хроматографического процесса, а также к проседанию сорбента в начале колонки из-за ухудшения его прочности. В-третьих, это загрязнение входного фильтра колонки частицами, попадающими в поток вследствие применения нефильтрованных растворителей, содержащих взвеси проб, а также появляющихся за счет износа уплотнений поршней, клапанов, инжектора. Это приводит к уменьшению числа пор фильтра, росту его гидравлического сопротивления и возрастанию давления на колонке. Необходимо фильтровать растворители и пробы и устанавливать дополнительные фильтры в линии для улавливания частиц, образующихся в процессе работы поршней, клапанов, инжектора. В-четвертых, это химическое загрязнение колонки. Его избежать полностью не удается, так как даже высокочистые растворители для ВЭЖХ, не говоря о технических видах, содержат некоторое количество примесей, продуктов фотохимической я окислительной деструкции растворителей, их стабилизаторов, примесей, тары и др. Пробы также содержат примеси, состав которых часто установлен не полностью. Эти примеси, если они не элюируются в условиях анализа, постепенно накапливаются на сорбенте в начале колонки и, играя роль нанесенной активной фазы, начинают избирательно удерживать некоторые компоненты пробы вплоть до их необратимой сорбции. Если эти примеси элюируются с большим временем удерживания, они приводят к нестабильности положения нулевой линии в виде дрейфа в ту или другую сторону, широких «горбов» в самые неожиданные моменты и т.д. К такому же «химическому» загрязнению, изменяющему параметры удерживания, приводит использование силикагеля, а в качестве подвижной фазы влажного гексана или гептана, постепенно «загрязняющих» безводный силикагель водой. Регенерацию вышедшей из строя колонки (в отличие от ремонта колонки) проводят без снятия концевых фитингов. Выбирают комплекс растворителей и химикатов, который позволяет удалить нежелательные загрязнения с сорбента и фильтров химическим или физико-химическим воздействием. Регенерация успешна только в том случае, если в процессе эксплуатации колонки не произошло физической или химической деградации слоя сорбента, т. е. образования каналов, пустот или отщепления привитой фазы. Первый вопрос, который возникает при регенерации, это можно ли для ускорения и улучшения процесса изменить направление потока через колонку, чтобы загрязнения с сорбента и фильтра на входе сразу удалялись, не проходя через весь слой сорбента. Вопрос не праздный, так как некоторые опытные специалисты считают это возможным, а другие решительно отрицают, указывая на возможность нарушения плотности упаковки, образования каналов и т.д. Фирмы-производители также не единодушны: некоторые считают изменение направления потока через колонку опасным; другие, напротив, рекламируют свои колонки как способные работать при любом-направлении потока; третьи даже не указывают для своих колонок направления потока, полагая, что это безразлично.

  • 419. Прикладная фотохимия
    Другое Химия

    Сущность метода «Ксерокс» состоит в следующем. Если на какую-либо основу нанести слой фотополупроводника толщиной 10-100 мкм с высоким удельным сопротивлением (порядка 1013-1014 Ом?см), а затем равномерно зарядить этот слой по всей поверхности до высокого электрического потенциала, то электрический потенциал слоя в темноте длительное время существенно не изменится. Это явление называется фотоэлектрическим эффектом. При экспонировании такого фотополупроводникового слоя на освещенных участках, соответствующих пробельным участкам оригинала, происходит полная или частичная нейтрализация электрических зарядов, в то время как на неосвещенных участках, соответствующих тёмным участкам оригинала, сохраняется первоначальное распределение зарядов, в результате чего образуется так называемое скрытое электростатическое изображение. Для получения видимого изображения поверхность экспонированного фотополупроводника покрывают специальным темным порошком тонером (или его суспензией), заряд которого противоположен по знаку заряду фотополупроводникового слоя. Порошок притягивается к поверхности фотополупроводникового слоя в местах скрытого электростатического изображения, сохранивших высокий потенциал, и изображение таким образом проявляется. Однако проявленное изображение является непрочным, оно легко нарушается, если прикоснуться к нему, поэтому это изображение закрепляется на самом полупроводнике или переносится на другую поверхность, где также закрепляется. Перенос проявленного изображения производится контактным способом - наложением бумаги или какого-либо другого носителя на проявленную поверхность фотополупроводника. При контакте поверхность, на которую переносится изображение, равномерно заряжается большим потенциалом того же знака, что и фотополупроводник, поэтому большая часть порошка притягивается к носителю. Процесс закрепления состоит в том, что порошок, с помощью которого было проявлено электростатическое изображение, расплавляется и прочно соединяется с поверхностью, образуя постоянное и длительно сохраняющееся изображение. Фотополупроводниковую поверхность, с которой переносится электростатическое изображение на другую поверхность, можно использовать многократно, очищая ее для последующего использования.

  • 420. Применение алкенов и алкодиенов
    Другое Химия

     

    • Полимеризация. При повышенной температуре, давлении, и в присутствии катализаторов молекулы этилена соединяются друг с другом в следствие разрыва двойной связи, и образуют большие молекулы: