Информация по предмету Химия

  • 541. Твердоконтактные потенциометрические сенсоры, селективные к поверхностно-активным веществам
    Другое Химия

    Результаты диссертационной работы представлялись на I Всероссийской студенческой конференции по теоретической и экспериментальной химии (г.Свердловск), Конференции "Молодежь и научно-технический прогресс" (г.Саратов), Межвузовской конференции "Органические реагенты в аналитической химии" (г.Саратов), VIII Всероссийской конференции по поверхностно-активным веществам и сырью для их производства (г.Белгород), Международной конференции "Химсенсоры (г.С.-Петербург), IV Конференции "Электрохимические методы анализа (г.Москва), Международном симпозиуме "Electrochemical sensors" (г.Матрафьюред, Венгрия), на 2-м Международном семинаре "Ионика твердого тела" (г.Черноголовка), на Региональной конференции по промышленной экологии "Промэк", (г.Саратов), на 53, 54, 55 Декадах науки СГТУ (г.Саратов), на научных семинарах кафедры химии СГТУ.

  • 542. Твердофазная полимеризация 1,4-бис-(л-ацетиламинофенил)бутадиина, оптические и фотоэлектрические свойства образующегося полимера
    Другое Химия

    Фотополупроводннковые свойства были обнаружены у всех исследованных образцов полимера ААФБ с разной степенью конверсии. Для получения сопоставимых результатов спектры фототока отнесены к единице падающей энергии. Для большинства исследованных образцов фототок приблизительно линейно зависит от интенсивности падающего света (1012 1014квант/см2с) во всем исследованном спектральном диапазоне. Фотопроводимость в направлении характерного удлинения кристаллических образцов, совпадающего, по-видимому, с направлением полимерных цепей, в 102 раза больше, чем в перпендикулярном направлении. Спектры фотопроводимости представляют собой кривые, монотонно возрастающие на три порядка в спектральной области от 900 до 300 нм (рис. 4). Спектры фотопроводимости не повторяют спектры поглощения. В области максимального поглощения кристаллических образцов (530680 нм) не наблюдается максимума фотопроводимости. Аналогичный результат получен и в работе [8] для полидиацетилен-бис-(л-толуолсульфоната). Авторы этой работы показали, что поглощение кристалла в области 550630 нм обусловлено возбуждением фотоэлектрически неактивных экситонных состояний полимерной макромолекулы, тогда как образование носителей происходит в результате более коротковолнового перехода валентная зона зона проводимости полимерной цепи. При этом поглощение, обусловленное переходом зона зона, малоинтенсивно и скрыто сильным экситонным поглощением кристалла.

  • 543. Твердофазный синтез перрената калия (WinWord97/2000)
    Другое Химия

    5. Список литературы.

    1. К.Б.Лебедев, «Рений», , М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1963.
    2. В.И.Спицын, Л.И.Мартыненко, «Неорганическая химия», М.: Изд. МГУ, 1991.
    3. Ф.Коттон, Дж.Уилкинсон, «Современная неорганическая химия» М.: Мир, 1969.
    4. М.А.Филянд, Е.И.Семенова, «Свойства редких элементов», М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1953.
    5. Л.В.Борисова, Е.Ф.Сперанская, «Кинетические методы определения рения», М: Наука, 1994.
    6. О.А.Сонгина, «Редкие металлы», М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1951.
    7. И.Друце, «Рений», М.: ИЛ, 1951.
    8. Gerard Duquenoy, “Nouvelles methodes de syntheses dans letat solide de sels alcalins delements a valences superieures”, Revue de Chimie minerale, t.8, 1971, pg.683.
    9. Andre Chretien, Gerard Duquenoy, “Syntheses entre solides a partir dun superoxyde alcalin; mesoperrenates de potassium, rubidium, ou cesium.”, Chimie Minerale, t.268, 1969.
    10. Р.Рипан, И.Четяну, «Неорганическая химия», М.: Мир, 1972.
    11. Л.В.Борисова, А.Н.Ермаков, «Аналитическая химия рения», М.:Наука, 1974.
    12. «Руководство по неорганическому синтезу», редактор Г.Брауэр, М.: Мир, 1985.
    13. Б.В.Некрасов «Основы общей химии», М.: Химия, 1973.
    14. Ю.Д. Перфильев «Матричная стабилизация неустойчивых состояний окисления элементов», Журнал российского химического общества им. Д.И.Менделеева, том XLII, 1998.
    15. M.Tromel und H.Dollung “Die Kristallstruktur von K3IO5” Z.anorg. allg. Chem. 411, 41-48, 1975.
  • 544. Теория Бутлерова
    Другое Химия

    При образовании химических связей электроны от одних атомов переходят к другим или же образуют общие электронные пары. При этом наибольшая электронная плотность спаренных электронов может быть сдвинута в сторону того или иного из атомов в зависимости от их электроотрицательности. В этом взаимодействии электронов, их перераспределении при химических реакциях и заключается взаимное влияние атомов. Результаты его сказываются на свойствах вещества, поскольку частично изменяются сами атомы. Например. В молекуле хлороводорода хлор сильно оттянул в свою сторону электронную плотность связи с водородом, поэтому вещество легко распадается в водном растворе на ионы. В молекуле воды сдвиг электронной плотности к кислороду меньше, чем к хлору в хлороводороде, поэтому молекулы воды распадаются на ионы в малой степени. В молекулах аммиака азот еще в меньшей степени оттягивает к себе электроны связей с атомами водорода, и молекула в водном растворе не подвергается диссоциации.

  • 545. Теплопроводность в сплошных средах и двухфазных, продуваемых и непродуваемых телах (слоях)
    Другое Химия

     

    1. Миснар А. Теплопроводность твердых тел, жидкостей, газов и их композиций. М.: Мир,1968.464 с.
    2. Аэров М.Э., Тодес О.М., Наринский Д.А. Аппараты со стационарным зернистым слоем. Гидравлические и тепловые основы работы. Л.: Химия, 1979. 176 с.
    3. Касаткин А.Г. Основные процессы и аппараты химической технологии. М.: Химия, 1961.
    4. Дытнерский Ю.И. Процессы и аппараты химической технологии (часть I). М.: Химия, 1995. 400 с.
    5. Павлов К.Ф. Романков П.Г. Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987. 576 с.
    6. Данилова Г.Н., Филаткин В.Н., Чарная Р.Г., Щербов М.Г. Сборник задач и расчетов по теплопередаче. М.: Государств. изд. торг. лит-ры, 1961.
  • 546. Термодинамическая оптимизация процессов разделения
    Другое Химия

     

    1. Осаждение. К важнейшим техническим способам осаждения относятся: осаждение под действием силы тяжести (отстаивание), осаждение под действием центробежной силы и осаждение по действием сил электрического поля.
    2. Фильтрование разделение суспензий или пылей с помощью пористой перегородки фильтра, способной задержать взвешенные частицы, находящиеся в жидкости или газе. Различают фильтрование под действием перепада давления и центробежное фильтрование (центрифугирование).
    3. Конденсация ожижение паров различных веществ путем отвода от них тепла. Различают поверхностную конденсацию и конденсацию смешением.
    4. Выпаривание процесс концентрирования растворов твердых нелетучих веществ путем удаления жидкого летучего растворителя в виде паров.
    5. Абсорбция поглощение газов или паров из газовых или паровых смесей жидкими поглотителями, называемыми абсорбентами. Десорбция выделение абсорбированных компонентов из жидкости. Различают физическую абсорбцию и хемосорбцию.
    6. Ректификация разделение жидких однородных смесей на составляющие вещества или группы веществ в результате противоточного взаимодействия паровой смеси и жидкой смеси.
    7. Экстракция извлечение одного или нескольких растворенных веществ из одной жидкости другой жидкостью, практически не смешивающейся (или частично смешивающейся) с первой. Один из основных (наряду с ректификацией) способов разделения жидких однородных смесей.
    8. Сублимация перенос вещества из твердой фазы в паровую, миную жидкую. Для сублимации характерна обратимость процесса. Благодаря этому возможно выделение сублимацией из смеси твердых веществ одного или нескольких компонентов, а затем в других условиях десублимация их, т.е. выделение нужного компонента из паровой фазы в чистом виде.
    9. Адсорбция поглощение газов или паров из газовых смесей или растворенных веществ из растворов твердыми поглотителями, называемыми адсорбентами. Особенностью процессов адсорбции являются избирательность и обратимость.
    10. Сушка процесс удаления влаги из твердых влажных материалов путем ее испарения и отвода образующихся паров.
    11. Процессы мембранного разделения смесей, или мембранные процессы - процессы разделения смесей посредством полупроницаемых мембран (обратный осмос, ультрафильтрацию, испарение через мембрану, диализ, электродиализ, диффузионное разделение газов).
    12. Классификация процесс разделения однородного сыпучего материала по размерам кусков (частиц).
  • 547. Термоэластопласты, фторкаучуки, полисульфон
    Другое Химия

    Фторкаучуки каучуки специального назначения, применяемые в производстве изделий и деталей, в которых должны сочетаться высокая стойкость к действию агрессивных сред и теплостойкость. Фторкаучуки широко используют для изготовления разнообразных уплотнителей и мембран, длительно эксплуатируемых при температурах 200°С и выше в контакте с маслами, топливами, смазками, растворителями, кислотами и окислителями. Из фторкаучуков изготовляют рукава, шланги и трубки для горячих агрессивных жидкостей и газов. Важная область применения фторкаучуков антикоррозийная защита аппаратуры и деталей, находящихся в контакте с агрессивными средами. Фторкаучуки применяют при получении прорезиненных тканей, используемых для изготовления прокладок, диафрагм, огнезащитной одежды и др.. на основе фторкаучуков получают губчатые резины, которые характеризуются высокой химстойкостью, хорошей электрической стойкостью и широким температурным интервалом эксплуатации, а также материалы для изоляции проводов и кабелей, эксплуатируемых при высоких температурах, и герметизирующие составы.

  • 548. Технеций
    Другое Химия

    Резонно предположить, что когда - то элемент № 43 существовал на Земле в заметных количествах, но постепенно исчез, как утренний туман. Так почему же в таком случае до наших дней сохранились уран и торий? Ведь они тоже радиоактивны и, следовательно, с первых же дней своей жизни распадаются, как говорится, медленно, но верно? Но именно в этом и кроется ответ на наш вопрос: уран и торий только потому и сохранились, что распадаются медленно, значительно медленнее, чем другие элементы с естественной радиоактивностью (и все же за время существования Земли запасы урана в ее природных кладовых уменьшились примерно в сто раз). Расчеты американских радиохимиков показали, что неустойчивый изотоп того или иного элемента имеет шансы, дожить в земной коре с момента «сотворения мира» до наших дней только в том случае, если его период полураспада превышает 150 миллионов лет. Забегая вперед, скажем, что когда были получены различные изотопы элемента № 43, выяснилось, что период полураспада самого долгоживущего из них лишь немногим больше двух с половиной миллионов лет, и, значит, последние его атомы перестали существовать, видимо, даже задолго до появления на Земле первого динозавра: ведь наша планета «функционирует» во Вселенной уже примерно 4,5 миллиарда лет.

  • 549. Технологические и экономические аспекты производства диметилового эфира терефталевой кислоты
    Другое Химия

    Сырьем для получения ДМТ служит п-ксилол. В основе всех процессов, используемых для синтеза ДМТ, лежит метод Виттен, предложенный в первоначальном варианте фирмой Chemische Werke Witlen GmbH (Германия). В дальнейшем процесс был модифицирован различными фирмами с целью улучшения его экономических показателей. Самый распространенный процесс разработан фирмой Dynamit Nobel AG (Германия). Применение данной фирмой нового катализатора (кобальто-марганцевый) окисления п-ксилола позволило проводить реакции окисления и этерификации без растворителей. При этом удалось снизить издержки производства и получить более высокий выход продукта. Согласно процессу фирмы Dynamit Nobel смесь п-ксилола и возвратного п-метилтолуилата окисляют воздухом при температуре 140-1700С и давлении 0.4-0.8 МПа в присутствии катализатора на основе тяжелого металла с образованием п-толуиловой кислоты и монометилтерефталата. Продукты окисления подвергают этерификации метанолом при температуре 250-2800С и давлении 2.0-2.5 МПа. Сырой ДМТ, отбираемый снизу ректификационной колонны очищают перекристаллизацией из метанола, центрифугируют и перегоняют с получением ДМТ сорта "для волокна" .Представляет интерес технология, разработанная японской фирмой "Мицуи сэкию кагаку", по которой получают ДМТ через промежуточную стадию синтеза ТФК. Реакцию этерификации терефталевой кислоты в ДМТ проводят в три стадии. Hа первой - реакция протекает при высоких температурах и давлении. При этерификации в одну стадию для достижения высокой степени конверсии необходимо использовать большой избыток метанола, что экономически нецелесообразно. В процессе "Мицуи" на первой стадии этерификации степень конверсии поддерживается низкой при минимальном избытке метанола. Hа второй и третьей стадии достигают высоких степеней конверсии за счет удаления из реакционной системы ДМТ и образующейся в ходе реакции воды. Значительным усовершенствованием процесса "Мицуи" является применение новой технологии очистки сырого ДМТ, включающей реакцию окисления и фракционирования, вместо кристаллизации, что позволяет значительно увеличить выход продукта и сократить примеси[6,7].

  • 550. Технологические иследования процесса массопереноса - диффузии
    Другое Химия

    Необходимо отметить, что используемые в опытах методологические подходы и аналитические уравнения для их описания во многих случаях полностью отражают реальные технологические процессы. Рассмотрим несколько наиболее типичных задач и покажем, как они могут быть реализованы при решении проблем медицины, защиты окружающей среды, коррозии металлов. Мне кажется, что очень показательна в этом случае нерешенная задача, связанная с определением комфортных условий для человека в системе: среда одежда (обувь) человек. С точки зрения диффузионных процессов мы можем абстрагироваться от человека как индивидуума, а рассматривать его как некоторый «источник» паров воды периодического действия, работа которого иногда сопровождается вспышками, связанными с эмоциональным состоянием. В этом случае роль одежды (а это, как правило, пористый полимерный материал) сводится к созданию таких условий в пространстве под одеждой, чтобы влажность и температура либо сохранялись постоянными, либо изменялись достаточно медленно, чтобы организм успевал адаптироваться к условиям окружающей среды. Очевидно, что решение этой проблемы требует, с одной стороны, постановки эксперимента, с помощью которого можно было бы получить необходимую информацию о коэффициентах диффузии пористых материалов, с другой" количественные сведения о периодичности источника и его производительности, с третьей привлечь исследователей, специалистов в области феноменологической теории диффузии, которые помогли бы создать математический образ системы, записать и решить дифференциальные уравнения и найти такое соотношение между параметрами сорбции, пористой структуры, коэффициентов переноса, которые бы обеспечили комфортные условия во внутри-одеждном пространстве. Эта информация должна была бы послужить технологам путеводным маяком для создания новых более совершенных типов полимерных пористых материалов.

  • 551. Технология минеральных солей. Соли магния
    Другое Химия

    1. Физические свойства.Легкий, рыхлый порошок белого цвета, легко впитывает воду. На этом свойстве основано его применение в спортивной гимнастике, нанесенный на ладони спортсмена, порошок предохраняет его от опасности сорваться с гимнастического снаряда. Температура плавления - 2825 °C температура кипения - 3600 °C.Плотность=3,58 г/см3.2.Химические свойства.Легко реагирует с разбавленными кислотами и водой с образованием солей и Mg(OH)2: MgO + 2HCl(разб.) > MgCl2 + H2O; MgO + H2O > Mg(OH)2.3.Получение.Получают обжигом минералов <http://ru.wikipedia.org/wiki/%D0%9C%D0%B8%D0%BD%D0%B5%D1%80%D0%B0%D0%BB> магнезита <http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B5%D0%B7%D0%B8%D1%82> и доломита <http://ru.wikipedia.org/wiki/%D0%94%D0%BE%D0%BB%D0%BE%D0%BC%D0%B8%D1%82>. 2Mg + O2 = 2MgO.4.Применение.В промышленности применяется для производства огнеупоров <http://ru.wikipedia.org/wiki/%D0%9E%D0%B3%D0%BD%D0%B5%D1%83%D0%BF%D0%BE%D1%80%D1%8B>, цементов <http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BC%D0%B5%D0%BD%D1%82>, очистки нефтепродуктов <http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%84%D1%82%D0%B5%D0%BF%D1%80%D0%BE%D0%B4%D1%83%D0%BA%D1%82>, как наполнитель при производстве резины <http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B7%D0%B8%D0%BD%D0%B0>. Сверхлегкая окись магния применяется как очень мелкий абразив для очистки поверхностей, в частности, в электронной промышленности. В медицине <http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B4%D0%B8%D1%86%D0%B8%D0%BD%D0%B0> применяют при повышенной кислотности <http://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C> желудочного сока <http://ru.wikipedia.org/wiki/%D0%96%D0%B5%D0%BB%D1%83%D0%B4%D0%BE%D1%87%D0%BD%D1%8B%D0%B9_%D1%81%D0%BE%D0%BA>, так как она обусловливается избыточным содержанием соляной кислоты <http://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D1%8F%D0%BD%D0%B0%D1%8F_%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%B0>. Жжёную магнезию принимают также при случайном попадании в желудок кислот.

  • 552. Технология получения и свойства мочевино-формальдегидных смол
    Другое Химия

    Мочевино-формальдегидные смолы твёрдые продукты белого цвета, легко растворимые в воде и нерастворимые в неорганических растворителях. Отверждение мочевино-формальдегидных смол ускоряется в присутствии кислотных катализаторов и с повышением температуры. В качестве катализаторов используют как органические (щавелевая, фталевая), так и минеральные (фосфорная, соляная) кислоты и некоторые соли (AlCl3, ZnCl2). Продукты отверждения бесцветные, светостойкие, легко окрашивающиеся полимеры. Смолы, отверждённые при низких температурах даже в присутствии больших количеств катализатора, имеют пониженную водостойкость. При повышении температуры отверждения водостойкость возрастает. Однако продукты, полученные в оптимальном режиме (120 140 , катализатор), всё же частично разлагаются под действием горячей воды или водных растворов солей. Это обусловлено недостаточной разветвлённостью цепей и малым количеством поперечных связей, о чём свидетельствует низкое коксовое число продуктов отверждения (14 21,5%) и их быстрая деструкция при нагревании без доступа воздуха.

  • 553. Технология производства полиакрилонитрила
    Другое Химия

    Молекулярно-массовое распределение полиакрилонитрила, соответствующее преобладающему способу обрыва цепи (рекомбинацией), характеризуется кривой с одним максимумом в случае гомогенной полимеризации (при отсутствии модифицирующего действия среды, например, диметилформамида или роданидов) и кривой с тремя максимумами в случае гетерофазной полимеризации. Специальные виды волокон (прочные, термостойкие) формуют из полиакрилонитрила, характеризующегося узким молекулярно-массовым распределением, т.к. максимально возможная при вытяжке ориентация уменьшается с увеличением полидисперсности. Полиакрилонитрил с наиболее узким молекулярно-массовым распределением образуется при анионной полимеризации акрилонитрила. При радикальной полимеризации акрилонитрила в гетерогенных условиях образуется полиакрилонитрил с наиболее широким молекулярно-массовым распределением.

  • 554. Технология самораспространяющегося высокотемпературного синтеза (СВС)
    Другое Химия

    После загрузки шихты реактор закрывают и, в зависимости от целевой задачи, вакуумируют или заполняют газом. Локальное инициирование осуществляется с пульта управления подачей тока на спираль. Протекание СВС - процесса контролируется по изменению давления газа в реакторе и по температуре охлаждающей воды. Остывание продуктов синтеза до 25-350С осуществляется непосредственно в реакторе. При получении нитридов, гидридов для увеличения поверхности контактирования шихты с азотом или водородом, реактор фиксируется в горизонтальном положении. Для обеспечения фильтрации реагирующих газов, шихта загружается на газопроницаемую тонкостенную лодочку с ребристой поверхностью. В зависимости от температуры, развивающейся при синтезе, лодочка может изготавливаться из графита или стали. При невысокой температуре (не выше 15000С) наиболее экономичны стальные лодочки. К недостаткам технологии СВС следует отнести трудоемкость ручных операций, открывания - закрывания затворов, низкую технологичность операции загрузки шихты, одноразовость действия.

  • 555. Технологія зв'язаного азоту
    Другое Химия

    Реактори синтезу аміаку є основними і найбільш складними апаратами установок синтезу. Вони визначають продуктивність системи, стабільність її роботи, тривалість експлуатації й економічну ефективність. У загальному виді реактор синтезу аміаку являє собою колонний апарат, усередині якого розміщена насадка, що складається з катализаторной коробки і теплообмінних елементів. Внутрішня частина колони синтезу призначена в основному для розміщення каталізатора. Від кількості каталізатора, його активності і режиму роботи залежить продуктивність реактора і всієї системи синтезу аміаку. Оптимальний температурний режим у реакційній зоні - 475-525°С.Для забезпечення цього режиму необхідно безупинно відводити з реакційної зони теплоту, еквівалентну кількості аміаку, що утворився. Спроби створити стабільний і оптимальний режим у колоні синтезу привели до розробки численних різновидів конструкцій реакторів синтезу аміаку

  • 556. Титан
    Другое Химия

    Каждый моль Ti, Zr или Hf способен сорбировать до 1 моля водорода, но быстро эта сорбция осуществляется лишь при высоких температурах (приблизительно с 400 для Тi и с 700 С для Zr). Значительно легче устанавливается равновесие, если металл был предварительно прокалён в атмосфере Н2. Простейшим методом синтеза этих гидридов является достаточное нагревание и затем медленное охлаждение металла в атмосфере водорода под тем или иным его давлением. При малом содержании сорбированного водорода внешний вид металла существенно не изменяется, но при большем он превращается в серый или чёрный порошок (с плотностью 3,8 для ТiH2 и 5,5 г/см3 для ZrH2). Образование гидридов ЭН2 из элементов идёт с довольно значительным выделением тепла: около 125 (Тi) или 167 кДж/моль (Zr). В обычных условиях эти гидриды устойчивы на воздухе (но при поджигании загораются). Они довольно инертны также по отношению к большинству веществ, не являющихся сильными окислителями. Всё это указывает, как будто, на образование при сорбции водорода определённых химических соединений. Однако подобные соединения должны быть чрезвычайно неустойчивы, так как поглощённое металлом количество водорода меняется в зависимости от его давления и последовательно уменьшается при нагревании. Интересно, что образование гидрида титана наблюдалось также при длительном действии на металл крепкой соляной кислоты; основная реакция идёт по уравнению:

  • 557. Титриметричний (об'ємний) та комплексонометричний методи аналізу
    Другое Химия

    Наважку солі Мора зважену на аналітичних вагах (подвійна сіль складу (NH4) SO4*FeSO4*6H2O) і розраховану для виготовлення 0,1 н розчину, розчиняють у мірній колбі на 100 мл у невеликому обємі води, підкисленої (для запобігання гідролізу) сульфатною кислотою і розводять розчин дистильованою водою до мітки. Відбирають виготовлений розчин солі мора обємом 25 мл у конічну колбу на 250 мл, добавляють до розчину золисту суміш обємом 15 мл. Цю суміш готують: розчиняють сіль MnSO4*4Н2О масою 70 г у 500 мл води добавляють 125 мл 85%-вої ортофосфатної кислоти, розчин розводять водою до обєму 1 л (суміш добавляють для кращого спостереження точки еквівалентності). Досліджуваний розчин розводять у два рази водою і титрують робочим розчином KMnO4, поки не зявиться рожеве забарвлення, яке не зникає протягом 2-3 хв. Визначення повторюють відбираючи з мірної колби нові порції розчину. Масову частку Fe в солі обчислюють за формулою:

  • 558. Толуол: свойства, применение, получение
    Другое Химия

    Однако физическими, химическими, а также квантово-механическими исследованиями установлено, что в молекуле бензола нет обычных двойных и одинарных углеродуглеродных связей. Все эти связи в нем равноценны, эквивалентны, т.е. являются как бы промежуточными "полуторными " связями, характерными только для бензольного ароматического ядра. Оказалось, кроме того, что в молекуле бензола все атомы углерода и водорода лежат в одной плоскости, причем атомы углерода находятся в вершинах правильного шестиугольника с одинаковой длиной связи между ними, равной 0,139 нм, и все валентные углы равны 120°. Такое расположение углеродного скелета связано с тем, что все атомы углерода в бензольном кольце имеют одинаковую электронную плотность и находятся в состоянии sp2 - гибридизации. Это означает, что у каждого атома углерода одна s- и две p- орбитали гибридизованы, а одна p- орбиталь негибридная. Три гибридных орбитали перекрываются: две из них с такими же орбиталями двух смежных углеродных атомов, а третья с s- орбиталью атома водорода. Подобные перекрывания соответствующих орбиталей наблюдаются у всех атомов углерода бензольного кольца, в результате чего образуются двенадцать s- связей, расположенных в одной плоскости.

  • 559. Тонкослойная хроматография. Применение в фармации
    Другое Химия

    Как оказывается, нанесение исследуемого вещества не такая сложная операция, но вместе с тем, она очень влияет на получаемые результаты хроматографирования.
    Часто, исследованию подвергаются либо жидкие анализируемые вещества, либо растворы твердых веществ, без какой либо предварительной пробаподготовки.
    Поэтому необходимо всегда помнить ряд моментов, серьезно влияющие на результаты разделения.
    Наиболее важным является концентрация наносимых веществ. В ТСХ принято наносить концентрации растворов около 1%. Но с другой стороны чувствительность метода позволяет определять вещества с гораздо меньшими концентрациями.
    Если в исследуемом веществе неизвестна общая концентрация компонентов, или известна концентрация но такого типа вещества еще не хроматографировали, нужно определить какое количество исследуемого раствора достаточно для качественного хромаграфирования. Существуют несколько приемов, позволяющие это определить.
    Для начала нужно нанести несколько пятен хроматографируемых растворов, равные по размеру, но с различным количеством (например 1, 2, 5 мкл) и после хроматографирования изучить форму и размеры разделенных пятен.
    Так при правильно подобранной концентрации форма разделенных веществ такая же, как и форма нанесенной на линии старта. Если разделенные пятна имеют большие размеры, чем пятно на старте, то нанесенная концентрация слишком велика. Появление "хвостов", неправильная форма разделенных пятен на пластинке тоже может говорить о высокой концентрации, но может быть вызвана неправильно подобранной хроматографической системой, либо химическим взаимодействием разделяемых компонентов.
    Подбором количества нанесенного вещества и системы растворителей можно добиться полного разделения на одной пластинке до десяти компонентов в исследуемых веществах. Удобно наносить образцы на специальном столике с трафаретами и подогревом. Нанесение пятен проводят на "линии старта" 1-2 см от нижнего края пластинки. Это необходимо для того, чтобы при опускании пластинки в систему не происходило растворение в ней образцов, а все нанесенное вещество подверглось хроматографированию.
    Нанесение растворов проводят либо микрошприцом, либо отградуированными капиллярами. Размер наносимого пятна не должен превышать 4 мм. Это связано с тем, что при большем размере пятна, происходит изменение формы под действием физических сил, да и границы разделенных компонентов могут перекрываться.
    Нанесение на пластины исследуемых веществ не должны сопровождаться разрушением сорбента (что довольно сильно влияет на качество разделения), поэтому капля должна наноситься касанием иглы или капилляра о слой сорбента, а не надавливанием. На размер образующегося пятна влияет не только количества наносимого раствора, но и от полярности растворителя и его температуры кипения. Так при нанесении одного и того же вещества в различных растворителях, образовавшееся пятно в котором в качестве растворителя использовался метанол будет больше, чем пятно от раствора хлороформа. с другой стороны при подогреве подложки испарение растворителей будет интенсивнее и размер пятна также уменьшается.
    Конечно, проще использовать при нанесении для подсушивания пятен фен, но только в том случае, когда есть полная уверенность, что наносимые вещества не будут окисляться под действием горячего воздуха.
    Расстояние между наносимыми пятнами должно быть около 2 см.
    Иногда при хроматографировании на пластинках наблюдается краевой эффект, в результате чего пятна располагаются не на одной линии а имеют вид подковы, либо по диагонали. Для устранения этого эффекта каждое пятно можно "снабдить" своей дорожкой, отделив нанесенный образец от других путем удаления линии сорбента. Это лучше всего делать под линейку острым предметом (типа скальпеля) но осторожно, чтобы не удалить слишком много сорбента.
    После нанесения исследуемых веществ на пластинку, необходимо добиться полного удаления растворителей, так как даже небольшое содержание растворителя в исследуемом веществе может повлиять на разделение и даже изменить состав хроматографической системы.
    Удаление растворителей обычно проводят естественной сушкой пластин 5-10 мин, либо при нагревании феном или в сушильном шкафу.

  • 560. Углеводы
    Другое Химия

    В растениях углеводы образуются из двуокиси углерода и воды в процессе сложной реакции фотосинтеза, осуществляемой за счет солнеч-ной энергии с участием зелёного пигмента растений - хлорофилла.