Информация по предмету Химия

  • 521. Спроектировать контактный аппарат для гидрирования бензола в циклогексан
    Другое Химия

    1.Производительность40 000 т/год2.Чистота бензола99,9995%3.Состав водородной смесиH2 97%, N2 2,6%, CH4 0,4%4.Чистота циклогексана99,6%5.Время на перезагрузку катализатора760 ч/год6.Производительность узла гидрирования4 т/час7.Степень гидрирования99,6%8.Соотношение газов на входе в реактор(H2 + N2)/C6H6 = 89.Объёмная скорость газов0,6 л/(лкатчас) 10.Температура ввода газов в реактор130 1400 С11.Температура гидрирования180 2000 С12.Температура циркуляции газа 400 С13.Тепловой эффект гидрирования2560 кДж/кг бензола14.Состав циркуляционного газаH2 50%, N2 50%15.Давление в системе 18 кгс/см216.Коэффициент растворимости

  • 522. Сравнительная характеристика меди и калия
    Другое Химия

    Калий по распространенности в земной коре занимает 7-е место. Главные минералы: сильвин (минерал подкласса хлоридов, KCl. Бесцветные, красные, голубые, желтые зернистые массы с характерным горько-соленым вкусом. Твердость 2; плотность ок. 2 г/см3 ) , карналлит (минерал подкласса хлоридов, KMgCl3·6H2O. Примеси Rb, Cs, Br. Белые, красноватые зернистые массы. Твердость 2,5, плотность 1,6 г/см3) , каинит( минерал класса сульфатов, KMg(SO4)Cl·3H2O. Светлые зернистые массы. Твердость 2,5-3; плотность 2-2,2 г/см3 ), полигалит (минерал класса сульфатов, K2Ca2Mg(SO4)4.2H2O. Светлые сплошные и волокнистые массы. Твердость 3,5; плотность 2,8 г/см3), лангбейнит и др. Месторождения осадочного происхождения. Промышленное содержание К2О в руде 12-30%. Бассейны: Верхнекамский (Российская Федерация), Прикарпатский (Украина), Припятский (Белоруссия), Верхнерейнский (Франция, Германия), Делавэрский (США), Саскачеванский (Канада) и др. Мировые запасы ок. 50 млрд. т (нач. 1990-х гг.).

  • 523. Сравнительный анализ моделей обратимого электрорастворения серебра с поверхности твердого электрода (Доклад)
    Другое Химия

    Экспериментальную кривую электрохимического растворения серебра получили на вольтамперометрическом анализаторе АВА-1. Использовали H-образную 3х-электродную ячейку с пористой перегородкой между рабочим электродом и электродом сравнения. В качестве вспомогательного электрода и электрода сравнения использовали платину. Потенциал платинового электрода сравнения относительно хлоридсеребряного электрода составлял -0.56 В. В качестве рабочего электрода использовали углеситалловый дисковый электрод. На рисунке показан рабочий цикл анализатора АВА-1, который использовался при получении экспериментальной вольтамперной кривой электрохимического растворения серебра. Потенциал регенерации +0.3 В, время регенерации 30 секунд, потенциал электролиза (электролиз при вращающемся электроде) -0.9 В, время электролиза 60 секунд, потенциал успокоения -0.8 В, скорость развертки потенциала 0.1 В/с.

  • 524. Становление понятий о химическом элементе
    Другое Химия

    Ýêñïåðèìåíòàëüíûå ðàáîòû, поведенные во второй половине 19 - начале 19 вв. Б.Франклином, Л.Гальвани, А.Вольтой и другими исследователями, привлекли внимание естествоиспытателей и филисофов к электрическим процессам. Результаты этих работ и выводы из них побудили Берцелиуса к разработке электрохимической теории. Приняв за основу электрохимические положения Дэви, Берцелиус считал причиной соединения элементов в определенном отношении электрическую полярность атомов. Учение об электричестве похволило дать простое объяснение природе, например, такого распространенного в химии явления, как образования солей. Оказалось, что с суть этого явления заключается во взаимной нейтрализации положительных и отрицательных зарядов мельчайших частичек вещества. На основе разработанной им теории Берцелиус сделал принципиально важный вывод: все химические элементы состоят из отрицательных и положительных веществ. Созданная на основе этих представлений дуалистическая модель явилась попыткой рассмотреть химическое родство как стремление к уравниванию различных электрических полярностей атомов или их групп. Тем самым развивались представления Дэви, что существует определенная причинная обусловленность явлений химического сходства и электрических процессов. Однако, ограниченность дуалистических процессов мешала химикам понять механизм превращений, протекающих иначе, чем образование солей. Так, электрохимическая теория Берцелиуса затруднила признание гипотезы Авогадро, имеющей большую область применения в химии. При помощи дуалистических представлений нельзя было объяснить многоатомность молекул газообразных простых веществ.

  • 525. Стекло
    Другое Химия

    Формование (иначе выработка) стеклянных изделий из стекломассы на протяжении тысячелетий производилось вручную. Значительно эффективнее ручного машинное формование. В зависимости от вида вырабатываемых изделий на практике используют несколько способов формования. Прессование применяется в производстве некоторых видов посудных изделий (чайные стаканы, пивные кружки, маслёнки, сахарницы и т. п.), стеклянной тары, архитектурных деталей и др. Оно может быть как ручным, так и машинным. Для ручного прессования служат пружинные или эксцентриковые прессы. Как ни разнообразны конструкции ручных и машинных прессов, все они имеют три основные формующие детали: форму (матрицу) с поддоном, пуансон и съёмное формовое кольцо. Первая деталь определяет внешнюю форму изделия, вторая внутреннюю, третья край изделия. Выдуваниеспецифический метод формования, применяемый в технике только к стеклу. Возможности этого метода весьма широки: производство сортовой (столовой) посуды, узкогорлой тары, электровакуумных изделий и т. д. При производстве немассовых изделий до сих пор применяется ручной способ выдувания. Основным инструментом рабочего выдувальщика является стеклодувная трубка. В течение долгой истории стеклоделия выдувание производилось ртом, ныне сконструированы и применяются «трубки-самодувки». Прессовыдувание применяется в машинном производстве широкогорлой стеклянной тары (банки различных типов). Предварительная заготовка и формование горла изделия производятся при этом способе прессованием (в черновой форме), а остальная часть изделия выдуванием (в чистовой форме). Вытягивание изделий из стекломассы, как и выдувание, своеобразный метод формования, применимый только к таким весьма вязким материалам, как стекло, притом с вязкостью, быстро возрастающей при понижении температуры. Методом вытягивания на различных машинах (разными способами) изготовляются: оконное и техническое листовое стекло, стеклянные дроты (трубки малого диаметра), трубы, стержни, стеклянное волокно. Прокатка стекла в её современном виде заключается в том, что струя стекломассы непрерывно поступает из печи в пространство между вращающимися вальцами, где и прокатывается в ленту, убираемую транспортёром. Методом непрерывной прокатки изготовляется листовое сткло, различных видов, преимущественно строительное, толщиной в 3 мм и больше: армированное (стекло с закатанной в него металлической сеткой), узорчатое, волнистое (имеющее форму кровельного шифера) и др. Прокатка применяется также в производстве стеклянных труб: стекломасса непрерывно поступает на вращающийся вал и развальцовывается двумя роликами; внутренний диаметр трубы определяется диаметром формующего вала. Отливка стеклянных изделий в формы встречается на практике редко; так изготовляются, например, крупные диски для астрономических приборов. Ведутся опыты по отливке фасонных труб с раструбами и фланцами в быстро вращающиеся формы (способ центробежного литья). Моллирование способ образования изделий в формах, при подаче в них стекла в виде твёрдых кусков. В результате постепенного нагревания стекла становится вязким и заполняет форму под действием либо собственного веса, либо внешнего усилия (прессование). Моллированием формуются заготовки из оптического стекла и крупная стеклянная скульптура.

  • 526. Стеклопластик
    Другое Химия

    Стеклопластик - композиционный материал, состоящий из стеклянного наполнителя и синтетического полимерного связующего. Наполнителем служат в основном стеклянные волокна в виде нитей, жгутов (роввингов), тканей, матов, рубленых волокон; связующим - полиэфирные, феноло-формальдегидные, эпоксидные, кремнийорганические смолы, полиимиды, алифатические полиамиды, поликарбонаты и др. Для стеклопластика характерно сочетание высоких прочностных, диэлектрических свойств, сравнительно низкой плотности и теплопроводности, высокой атмосферо-, водо- и химстойкости. Механические свойства стеклопластика определяются преимущественно характеристиками наполнителя и прочностью связи его со связующим, а температуры переработки и эксплуатации - связующим. Наибольшей прочностью и жёсткостью обладают стеклопластики, содержащие ориентированно расположенные непрерывные волокна. Такие стеклопластики подразделяются на однонаправленные и перекрёстные; у первых волокна расположены взаимно параллельно, у вторых - под заданным углом друг к другу, постоянным или переменным по изделию. Изменяя ориентацию волокон, можно в широких пределах регулировать механические свойства стеклопластиков.

  • 527. Стеклянные электроды и их приминение
    Другое Химия

    Вообще теория механизма диффузии ионов в твердом теле достаточно хорошо разработана лишь для простых ионных кристаллов строго регулярной структуры, типа каменной соли, галогенидов серебра и т.п. В них можно выделить 3 главных механизма диффузии.

    1. Диффузия по вакантным узлам решетки. Ион перескакивает из одной группы к другому аналогичному узлу, где место противоиона было не занято (т.е. была вакансия, «дырка»). Этот процесс, повторяясь, приводит к перемещению ионов в одном направлении, а вакансий в другом, противоположном. Такой механизм диффузии называют «вакансионным», или «дырочным».
    2. Ион может заранее отдиссоциировать от узла и занимать положение, не связанное с его пребыванием возле какого-либо определенного узла, находиться между узлами в междоузлиях. Выход из этого положения и миграция в другое, аналогичное также связаны с некоторыми энергетическими затратами, но они меньше, чем в предыдущем случае. Такой механизм миграции называют «межузельным».
    3. Третий механизм объединяет черты двух предыдущих. Ион из междоузлия попадает в занятый другим ионом узел и выбивает другой из лунки или как бегун передает эстафетную палочку, оставаясь сам на месте. Этот механизм так и называется «крокетный», или «эстафетный».
  • 528. Строение атома
    Другое Химия

    линий спектра, ни и само существование линейчатых спектров. В 1913 г. Бор предложил сою теорию строения атома, в которой ему удалось с большим искусством согласовать спектральные явления с ядерной моделью атома, применив к последней так называемую квантовую теорию излучения, введенную в науку немецким ученым-физиком Планком. Сущность теории квантов сводится к тому, что лучистая энергия испускается и поглощается не непрерывно, как принималось раньше, а отдельными малыми, но вполне определенными порциями - квантами энергии. Запас энергии излучающего тела изменяется скачками, квант за квантом; дробное число квантов тело не может ни испускать, ни поглощать. Величина кванта энергии зависит от частоты излучения: чем больше частота излучения, тем больше величина кванта. Кванты лучистой энергии называются также фотонами. Применив квантовые представления к вращению электронов вокруг ядра, Бор положил в основу своей теории очень смелые предположения, или постулаты. Хотя эти постулаты и противоречат законам классической электродинамики, но они находят свое оправдание в тех поразительных результатах, к которым приводят, и в том полнейшем согласии, которое обнаруживается между теоретическими результатами и огромным числом экспериментальных фактов. Постулаты Бора заключаются в следующем: Электрон может двигаться вокруг не по любым орбитам, а только по таким, которые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых или квантовых орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает. Переход электрона с удаленной орбиты на более близкую сопровождается потерей энергии. Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Чем больше расстояние от орбиты, на которой находится электрон, до той, на которую он переходит, тем больше частота излучения. Простейшим из атомов является атом водорода; вокруг ядра которого вращается только один электрон. Исходя из приведенных постулатов, Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: 1 : 2 : 3 : ... n Величина n получила название главного квантового числа. Радиус ближайшей к ядру орбиты в атоме водорода равняется 0,53 ангстрема. Вычисленные отсюда частоты излучений, сопровождающих переходы электрона с одной орбиты на другую, оказались в точности совпадающими с частотами, найденными на опыте для линий водородного спектра .Тем самым была доказана правильность расчета устойчивых орбит, а вместе с тем и приложимость постулатов Бора для таких расчетов. В дальнейшем теория Бора была распространена и на атомную структуру других элементов, хотя это было связанно с некоторым трудностями из-за ее новизны.

  • 529. Строение и основные свойства ароматических гетероциклов
    Другое Химия

    Особенности реакционной способности гетероциклических соединений по сравнению с их карбоциклическими аналогами обуславливаются именно такими гетерозаместителями. В качестве гетероатомов чаще всего выступают элементы второго периода (N, O) и S, реже - Se, P, Si и др. элементы. Как и в случае карбоциклических соединений, наиболее специфические свойства гетероциклических соединений проявляют ароматические гетероциклические соединения (гетероароматические соединения). В отличие от атомов углерода карбоциклических ароматических соединений, гетероатомы могут отдавать в ароматическую систему не только один (гетероатомы пиридинового типа), но и два (гетероатомы пиррольного типа) электрона. Гетероатомы пиррольного типа обычно входят в состав пятичленных циклов (пиррол, фуран, тиофен). В одном гетероцикле могут сочетаться оба типа гетероатомов (имидазол, оксазол). Особенности реакционной способности гетероароматических соединений определяются распределением электронной плотнности в цикле, которая, в свою очередь, зависит от типов гетероатомов и их электроотрицательности.

  • 530. Строение и свойства вещества
    Другое Химия

    Усиление примесной проводимости n-типа происходит, если в кристалле Ge один из атомов замещен атомом Р, на внешнем энергетическом уровне которого находится 5 валентных электронов, 4 из которых образуют ковалентные связи с соседними атомами Ge, а один электрон находится на свободной орбитали у атома фосфора. При передаче кристаллу Ge небольшой энергии (4,4 кДж/моль) этот электрон легко отщепляется от примесного атома Р и проникает из валентной зоны через запрещённую зону в зону проводимости, т.е. служит переносчиком тока. В целом же кристалл Ge остаётся электронейтральным (рис.3). Примеси в кристаллах, атомы которых способны отдавать электроны, усиливая электронную проводимость, называются донорами. По отношению к Ge, Si это р-элементы 5-й группы, а также Аu и ряд других элементов.

  • 531. Строение металлов (кристаллическое)
    Другое Химия

    Поверхностные дефекты имеют малую толщину и значительные размеры в двух других измерениях. Обычно это места стыка двух ориентированных участков кристаллической решетки. Ими могут быть границы зерен, границы фрагментов внутри зерна, границы блоков внутри фрагментов. Соседние зерна по своему кристаллическому строению имеют неодинаковую пространственную ориентировку решеток. Блоки повернуты друг по отношению к другу на угол от нескольких секунд до нескольких минут, их размер 105 см. Фрагменты имеют угол разориентировки не более 5°. Если угловая разориентировка решеток соседних зерен меньше 5°, то такие границы называются малоугловыми границами. Такая граница показана на рис. 1.11. Все субзеренные границы (границы фрагментов и блоков) малоугловые. Строение границ зерен оказывает большое влияние на свойства металла.

  • 532. Структура афлатоксинов
    Другое Химия
  • 533. Структура и адгезионные свойства отверждённых эпоксидных смол
    Другое Химия

    Однако вопрос о классификации оказывается не таким уже простым. Адгезив можно представить состоящим по крайней мере из трех слоев: тончайшего ориентированного слоя на поверхности субстрата, промежуточного слоя, где влияние силового поля поверхности субстрата оказывается значительно ослабленным и, наконец, основной массы адгезива, где влияние поверхности субстрата практически не ощущается. Поэтому следует иметь в виду, что разрыв может произойти по границе между ориентированным и переходным слоем или по основной массе адгезива. В последнее время многие исследователи высказывали мысль о том, что чистого адгезионного разрушения вообще не может быть. Тот вид разрушения, который обычно воспринимается как адгезионный, в действительности не является таковым, а представляет собой разрушение по слою адгезива, непосредственно примыкающему к поверхности субстрата. В соответствии с этими соображениями адгезионным расслаиванием следует считать такое разрушение, которое происходит в ориентированном слое адгезии вблизи поверхности субстрата. Толщина этого слоя адгезива, на который простирается влияние силового поля субстрата, зависит от характера субстрата, условий формирования контакта и других факторов. Однако эта точка зрения разделяется не всеми. Если и не по всей площади контакта, то во всяком случае на отдельных участках адгезив может полностью отделиться от субстрата, не оставив на подложке никаких следов. Особенно вероятен такой исход, когда адгезив плохо смачивает субстрат и на границе контакта остаются пузырьки воздуха и другие дефекты, ослабляющие систему. Кроме того, далеко не всегда адгезив наносится на субстрат в виде раствора. Иногда это может быть вязко-текучая масса или пластичный материал. Трудно ожидать в этих условиях образования хорошо ориентированного слоя на твердой поверхности[6].

  • 534. Структура молекулы воды и ее ионов
    Другое Химия

    Новая теория ставит перед нами такой вопрос: сколько же электронов в молекуле воды? Всегда ли первый и второй электроны атома кислорода остаются в своих ячейках при приближении к ним электронов атомов водорода? У нас нет пока однозначного ответа на этот вопрос, и мы склонны полагать, что реализуются все возможные варианты. В одних случаях первый и второй (осевые) электроны атома кислорода отсутствуют в молекуле воды и их места занимают электроны атомов водорода. Но не исключено и присутствие этих электронов в молекуле воды, так как валентные электроны атомов, вступающих в связь, могут соединяться не только с протонами соседнего атома, но и с его валентными электронами. С учетом этого структура молекулы воды может отличаться количеством электронов в ней, и возникает необходимость дать названия этим структурам.

  • 535. Сульфиды железа (FeS, FeS2) и кальция (CaS)
    Другое Химия

    Метод исследования физико-химических и химических превращений, происходящих в минералах и горных породах в условиях заданного изменения температуры. Термический анализ позволяет идентифицировать отдельные минералы и определять их количественное содержание в смеси, исследовать механизм и скорость протекающих в веществе изменений: фазовые переходы или химические реакции дегидратации, диссоциации, окисления, восстановления. С помощью термического анализа регистрируется наличие процесса, его тепловой (эндо- или экзотермичность) характер и температурный интервал, в котором он протекает. С помощью термического анализа решается широкий круг геологических, минералогических, технологических задач. Наиболее эффективно использование термического анализа для изучения минералов, испытывающих фазовые превращения при нагревании и содержащих H2O, CO2 и другие летучие компоненты либо участвующих в окислительно-восстановительных реакциях (оксиды, гидроксиды, сульфиды, карбонаты, галогениды, природные углеродистые вещества, метамиктные минералы и др.).

  • 536. Супрамолекулярная химия
    Другое Химия

    В последнее время удалось создать переключающиеся молекулярные ансамбли, изменяющие свою пространственную структуру в зависимости от действия таких внешних факторов, как рН среды или ее электрохимический потенциал. Примером может служить ротаксан, показанный на рис. 8. Он состоит из длинной полиэфирной цепочки, которая «продета» через цикл, построенный из двух остатков дипиридила, соединенных циклофановыми мостиками [29]. Чтобы цикл не соскочил с цепочки, на концах ее имеются объемные группы триизопропилсилильные заместители. Включенные в полиэфирную цепочку остатки 4,4'-диаминодифенила и 4,4'-дигидроксидифенила обладают выраженными электронодонорными свойствами; поэтому электроноакцепторный тетракатионный цикл электростатически закрепляется именно на них. При этом реализуются две конформации, находящиеся в состоянии подвижного равновесия. Так как ароматические амины более сильные электронодоноры, чем фенолы, преобладает форма, где цикл взаимодействует с аминным фрагментом. Однако положение равновесия можно изменять, варьируя кислотность среды. В сильнокислой среде аминные атомы азота протонируются, т.е. сами становятся электроноакцепторами, и бис-дипиридиниевый цикл полностью перескакивает на фенольный фрагмент. То же самое происходит при изменении внешнего электрохимического потенциала. По-видимому, на основе этого устройства может быть создан молекулярный переключатель. Полагают, что подобные молекулярные устройства обеспечат будущее развитие нанотехнологии, которая во многом заменит доминирующую сейчас полупроводниковую технологию [29].

  • 537. Сущность и химическая структура стероидов
    Другое Химия

    В опытах на животных и на человеке, прем анаболических стероидов показал увеличение размеров сердца. Сердечная мышца изменяется точно так же, как и при хронических пороках сердца. Поэтому среди молодых атлетов-химиков часто случаются так называемые внезапные смерти. В одном зарегистрированном случае молодой человек прямо на тренировке потерял сознание и умер. Вскрытие показало, что сердечная мышца сильно увеличена в размерах и имеет большое количество участков омертвевшей ткани. По мнению авторитетов от медицины, употребление анаболиков привело к тому, что ткани сердечной мышцы разрастались быстрее, чем необходимые кровеносные сосуды. Из-за этого часть тканей сердца обеспечивалась кровью плохо, новые клетки отмирали, это вызвало сердечный приступ. Как анаболические стероиды действуют на кровеносные сосуды? Злоупотребление стероидами вызывает отвердение артерий уже в молодости: высокие дозы анаболиков понижают уровень эластина в крови и повышают коллаген в стенках кровеносных сосудов. Артерии от этого твердеют. По еще не изученным причинам, орагнизм реагирует на свой собственный тестостерон иначе, чем на тот, который поступает извне. Например, тестостерон тела понижает уровень холестерина в крови, в то время как анаболические стероиды холестерол повышают. Принимаемые анаболические стероиды понижают уровень HDL (high-density lipoprotein - липопротеид высокой плотности (ЛВП) ) и повышают уровень LDL (low density lipoprotein - липопротеид низкой плотности (ЛНП) ) и триглицеридов в крови. Все это повышает количество холестерина в крови. Когда прекращается прием стероидов, ситуация постепенно приходит в норму. Однако при длительном приеме стероидов все равно происходит отвердение стенок сосудов и увеличивается риск сердечного приступа. Как анаболические стероиды действуют на кровеносные сосуды? Анаболические стероиды могут вызывать разрастание количества склеротических бляшек в крови. В течение дня организм переносит стрессы и различные мелкие повреждения. А атлетические тренировки вызывают еще большие повреждения. Такой стресс вызывает множество мелких утечек в кровеносной системе. Обычно никаких видимых следов этого нет, хотя существенная утечка может выглядеть как синяк. Бляшки по идее призваны такие утечки ликвидировать, чтобы кровеносная система продолжала нормально функционировать. Злоупотребление стероидами связано с повреждениями соединительных тканей. Стероиды, кроме того, позволяют более легко бляшкам слипаться. Это явление называется "гиперсобирание" ("hyperaggregability") и может привести к образованию тромбов, к сердечным приступам и даже к смерти.

  • 538. Сырьевая база химической промышленности
    Другое Химия
  • 539. Таблица растворимости солей. Периодическая система Д.И. Менделева
    Другое Химия
  • 540. Татарстан - республика химии
    Другое Химия

    ОАО "КЗСК" ориентировано на выпуск каучуков специального на значения. Основными материалами, выпускаемыми сегодня, являются:

    • натрий-бутадиеновый каучук - представляет собой продукт полимеризации бутадиена и предназначен для изготовления резинотехнических, асбестотехнических изделий и абразивов;
    • тиоколы и герметики на их основе - используются для изготовления уплотнительных и герметизирующих паст, которые нашли применение в авиа- и судостроении, радиотехнике и строительстве;
    • уретановые каучуки и термоэластопласты - используются для изготовления изделий с высокой прочностью, маслобензостойкостью, хорошими амортизационными свойствами, устойчивостью к среде кислорода и озона, уникальной износостойкостью;
    • полиэфиры - используются для изготовления уретановых каучуков, износостойких резинотехнических изделий на их основе, компонентов для клеевых композиций и пенополиуретанов;
    • силиконовые каучуки - характеризуются высокой термо-, вибро- и морозостойкостью, в сочетании с высокими диэлектрическими свойствами, гидрофобностыо, сопротивлением действию озона, окислителей, а также полным отсутствием токсичности. На основе силиконовых каучуков производятся резиновые смеси, герметики, компаунды, искрозащитные материалы, самослипающиеся ленты и резиноткани.