Строение и основные свойства ароматических гетероциклов
Информация - Химия
Другие материалы по предмету Химия
Государственное образовательное учреждение
высшего профессионального образования
Челябинский Государственный Университет
Кафедра химической технологии и вычислительной химии
Реферат
на тему:
Строение и основные свойства ароматических гетероциклов
Выполнила: студентка группы Х-403
Аскарова Жанна
Челябинск, 2011
Гетероциклическими называют соединения с замкнутой цепью, содержащей, помимо атомов углерода, атомы других элементов. Любой атом, способный образовать, по крайней мере, две ковалентные связи, может участвовать в образовании кольца. Элементы, которые участвуют вместе с углеродом в образовании цикла, называют гетероатомами. Наиболее хорошо изученными и широко распространенными являются циклические соединения кислорода, серы и азота.
Гетероциклы могут содержать три, четыре, пять, шесть и большее число атомов в цикле. Также как и карбоциклические соединения, пяти и шестичленные гетероциклы наиболее устойчивы. Число возможных гетероциклических систем очень велико за счет большого числа вариантов взаимного расположения гетероатомов в цикле и существованию гетероциклов с конденсированными ядрами.
Гетероциклические соединения широко распространены в природе - это витамины, алкалоиды, пигменты, компоненты ДНК и РНК, ферментов и многие другие.
Ароматические гетероциклы представляют собой плоские циклические системы, содержащие вместо одного или нескольких атомов углерода атомы кислорода, серы, азота. Ароматическими их называют вследствие того, что они удовлетворяют всем критериям, присущим любой ароматической системе, а именно:
система является циклической;
цикл является плоским;
имеется сопряжение по всему циклу, то есть возможность беспрепятственной делокализации любого из p-электронов по всей системе, благодаря наличию негибридизованных р-орбиталей;
число делокализованных p-электронов, участвующих в сопряжении, отвечает, согласно правилу Хюккеля, проявлению ароматических свойств, а именно, равно 4n+2, где n - любое натуральное число, включая 0.
Среди ароматических гетероциклических соединений наиболее широко распространены и, соответственно, представляют наибольший интерес 5- и 6-членные гетероциклы, имеющие в своем составе азот, серу и кислород, а также эти же системы, конденсированные с бензольным кольцом.
К простейшим пятичленным ароматическим гетероциклам с одним гетероатомом относятся фуран тиофен и пиррол:
В их молекулах шесть p-электронов (четыре электрона двух -связей и два электрона гетероатома, не затраченных на образование связей) образуют кольцевую сопряженную систему. Так как цикл плоский, то выполняется правило Хюккеля и соединение приобретает ароматический характер. На рисунке показано расположение p-орбиталей в молекулах этих гетероциклов:
Реакционная способность
гетероциклический атом углерод нуклеофильность
Особенности реакционной способности гетероциклических соединений по сравнению с их карбоциклическими аналогами обуславливаются именно такими гетерозаместителями. В качестве гетероатомов чаще всего выступают элементы второго периода (N, O) и S, реже - Se, P, Si и др. элементы. Как и в случае карбоциклических соединений, наиболее специфические свойства гетероциклических соединений проявляют ароматические гетероциклические соединения (гетероароматические соединения). В отличие от атомов углерода карбоциклических ароматических соединений, гетероатомы могут отдавать в ароматическую систему не только один (гетероатомы пиридинового типа), но и два (гетероатомы пиррольного типа) электрона. Гетероатомы пиррольного типа обычно входят в состав пятичленных циклов (пиррол, фуран, тиофен). В одном гетероцикле могут сочетаться оба типа гетероатомов (имидазол, оксазол). Особенности реакционной способности гетероароматических соединений определяются распределением электронной плотнности в цикле, которая, в свою очередь, зависит от типов гетероатомов и их электроотрицательности.
Нуклеофильность
Так, для пятичленных гетероциклов с одним гетероатомом (пиррольный тип), ароматический секстет электронов распределяется по пяти атомам цикла как, что ведёт к высокой нуклеофильности этих соединений. Для них характерны реакции электрофильного замещения, они весьма легко протонируются по пиридиновому азоту (предпочтительно, см. далее) или углероду цикла, галогенируются и сульфируются в мягких условиях. Реакционная способность при электрофильном замещении убывает в ряду пиррол > фуран > селенофен > тиофен > бензол.
Введение гетероатомов пиридинового типа в пятичленные гетероциклы ведёт к снижению электронной плотности, нуклеофильности, и, соответственно, реакционной способности в реакциях электрофильного замещения, то есть эффект аналогичен влиянию электроноакцепторных заместителей для производных бензола. Азолы реагируют с электрофилами подобно пирролам с одним или несколькими электроноакцепторными заместителями в кольце, а для оксазолов и тиазолов становится возможным лишь при наличии активирующих заместителей с +M-эффектом (амино- и гидроксигруппы).
Для шестичленных гетероциклов (пиридиновый тип) пониженная по сравнению с бензолом электронная п?/p>