Полярография. Сущность метода. Применение в медико-биологических исследованиях
Информация - Химия
Другие материалы по предмету Химия
МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
САМАРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
Кафедра общей, бионеорганической и биоорганической химии
РЕФЕРАТ ПО ЭЛЕКТИВНОЙ ТЕМЕ:
Полярография. Сущность метода. Применение в медико-биологических исследованиях
САМАРА 2010
Оглавление
1) Классификация физических и физико-химических методов количественного анализа
) Сущность метода
) Схема полярографической установки
) Прямая полярография
) Количественный полярографический анализ
) Определение цинка в растворе методом стандарта
) Дифференциальная полярография
) Хроноамперометрия с линейной разверткой потенциала
) Инверсионная вольтамперометрия
) Анализ органических соединений
) Полярографическое исследование реакций комплексообразования
) Применение полярографии
) Список литературы
1) Классификация физических и физико-химических методов количественного анализа
В научно-исследовательских и заводских лабораториях широко применяются разнообразные физические и физико-химические методы количественного анализа.
Все физические и физико-химические методы анализа обычно делят на следующие группы:
)Электрохимические
)Спектральные (оптические)
)Хроматографические
)Радиометрические
)Масс-спектральные
К первой группе - электрохимическим методам анализа - и относится метод полярографии, который мы попробуем рассмотреть подробнее.
) Сущность метода
Полярографический анализ (полярография) основан на использовании следующих зависимостей между электрическими параметрами электрохимической (в данном случае - полярографической) ячейки, к которой прилагается внешний потенциал, и свойствами содержащегося в ней анализируемого раствора.
а) В качественном полярографическом анализе используют связь между величиной приложенного на микроэлектроде внешнего электрического потенциала, при котором наблюдается восстановление (или окисление) анализируемого вещества на микроэлектроде в данных условиях, и природой восстанавливающегося (или окисляющегося) вещества.
б) В количественном полярографическом анализе используют связь между величиной диффузионного электрического тока, устанавливающегося в полярографической ячейке после достижения определенного значения приложенного на микроэлектроде электрического потенциала, и концентрацией определяемого (восстанавливающегося или окисляющегося) вещества в анализируемом растворе.
Электрические параметры - величину приложенного электрического потенциала и величину диффузионного тока - определяют при анализе получаемых поляризационных, или вольт-амперных, кривых, отражающих графически зависимость электрического тока в полярографической ячейке от величины приложенного потенциала микроэлектрода. Поэтому полярографию иногда называют прямой вольтамперометрией.
Классический полярографический метод анализа с применением ртутного капающего (капельного) электрода был разработан и предложен в 1922 г. чешским ученым Ярославом Гейровским (1890-1967), хотя сам ртутный капающий электрод применялся чешским физиком Б. Кучерой еще в 1903 г.
В 1925 году Я. Гейровский и М. Шиката сконструировали первый полярограф, позволивший автоматически регистрировать поляризационные кривые. В дальнейшем были разработаны различные модификации полярографического метода. За открытие и развитие этого метода Я. Гейровскому в 1959 г. была присуждена Нобелевская премия.
) Схема полярографической установки
Рассмотрим сущность классической полярографии
В сосуде, в который вносится анализируемый раствор с определяемым веществом, имеются два электрода - микрокатод и микроанод, подключенные к внешнему источнику постоянного электрического тока. На микрокатод прилагается постепенно возрастающий по абсолютной величине отрицательный электрический потенциал. Микрокатод, помещенный в ячейку, представляет собой стеклянный капилляр, заполненный жидкой ртутью, соединенный шлангом с резервуаром, содержащим жидкую ртуть. Из капилляра медленно, по каплям вытекает ртуть (поэтому такой электрод и называют капающим ртутным электродом), поступающая из резервуара. Микроэлектродом - анадом - в рассматриваемом варианте служит жидкая ртуть на дне сосуда. Поверхность ртутного капающего микроэлектрода, т.е. ртутной капли, очень мала, тогда как поверхность анода - большая.
Рассмотрим электролиз в системе, где катодом служит ртутный капающий электрод, а анодом является практически неполяризуемый каломельный электрод. Изменение внешней ЭДС в такой системе будет полностью идти на изменение потенциала катода. Если в растворе нет веществ, способных восстанавливаться под действием электрического тока, сила тока I будет пропорциональна приложенному напряжению Е (закон Ома):
I = E/R,
где R - сопротивление.
В присутствии веществ, способных восстанавливаться на ртутном электроде в области исследуемых напряжений, вид кривой зависимости тока от напряжения существенно изменится. По достижении потенциала восстановления ионы начнут разряжаться на ртутном катоде нередко с образованием амальгамы:
Мn+ + ne- + Hg = M(Hg) (1)